Sun Fireplane System Interconnect and
POWER4 System Microarchitecture

Raj Parihar
parihar@ece.rochester.edu
References

- “The Sun Fireplane System Interconnect”
 - Alan Charlesworth

- “POWER4 System Microarchitecture”
 - J. M. Tendler et al.
Why System Interconnect?

- Multiprocessor Design Objective
 - Minimize Overall Cost
 - Maximize Overall Performance
 - Higher Reliability
 - Better Scalability

- All objectives are constrained by system Interconnects
 - “Communication is the main bottleneck in high performance computing”
Multiprocessor System: Sales

- Major share is still with small scale, 8-16 cores, multiprocessors

- Key trend
 - Sales of large and mid scale multiprocessors, with > 8 cores, have doubled every year
Outline

- Motivation and Overview
- Sun Fireplane Interconnect Generation
- IBM System Interconnect Generation
- Multiprocessor System Architecture
 - Sun Fireplane System Architecture
 - POWER4 System Microarchitecture
- Cache Coherence and Memory Organization
- Large Scale Shared Memory Multiprocessors
- Comparison and Summary
Evolution: Sun System Interconnect

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Cypress SPARC</td>
<td>SuperSPARC</td>
<td>UltraSPARC-I/II</td>
<td>UltraSPARC-III</td>
</tr>
<tr>
<td>Maximum processors in a system</td>
<td>4</td>
<td>64</td>
<td>64</td>
<td>>64</td>
</tr>
<tr>
<td>Processor clock</td>
<td>40 MHz</td>
<td>40–60 MHz</td>
<td>167–400 MHz</td>
<td>≥750 MHz</td>
</tr>
<tr>
<td>System clock</td>
<td>40 MHz</td>
<td>50–55 MHz</td>
<td>80–100 MHz</td>
<td>150 MHz</td>
</tr>
<tr>
<td>Cache-coherency mechanism</td>
<td>Broadcast</td>
<td>Broadcast + point-to-point</td>
<td>Broadcast + point-to-point</td>
<td>Broadcast + point-to-point</td>
</tr>
<tr>
<td>Packet protocol</td>
<td>Circuit switched</td>
<td>Packet switched</td>
<td>Broadcast + point-to-point</td>
<td>Broadcast + point-to-point</td>
</tr>
<tr>
<td>Address and data</td>
<td>Multiplexed on same wires</td>
<td>Packet switched</td>
<td>Broadcast + point-to-point</td>
<td>Broadcast + point-to-point</td>
</tr>
<tr>
<td>Cache coherency line size</td>
<td>32 bytes</td>
<td>64 bytes</td>
<td>64 bytes</td>
<td>64 bytes</td>
</tr>
<tr>
<td>System clock per snoop</td>
<td>16</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Max snoop rate per address bus</td>
<td>2.5 million/sec</td>
<td>4.5–5 million/sec</td>
<td>40–50 million/sec</td>
<td>150 million/sec</td>
</tr>
<tr>
<td>Max data bandwidth per address bus</td>
<td>0.08 GBps</td>
<td>0.29–0.32 GBps</td>
<td>2.5–3.2 GBps</td>
<td>9.6 GBps</td>
</tr>
<tr>
<td>Max number of address buses</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Max address-limited data bandwidth</td>
<td>0.08 GBps</td>
<td>1.28 GBps</td>
<td>12.8 GBps</td>
<td>172 GBps</td>
</tr>
<tr>
<td>Datapath width</td>
<td>8 bytes</td>
<td>16 bytes</td>
<td>32 bytes</td>
<td>32 bytes</td>
</tr>
<tr>
<td>Interconnect implementation</td>
<td>Bus</td>
<td>Buses</td>
<td>Mid-range: Buses High-end: Switches</td>
<td>Switches</td>
</tr>
</tbody>
</table>

5. **Fifth Generation**
- Feb. 2004
- UltraSPARC-IV
- 72 (Dual-core = 144)
- 1.35GHz
- 150 MHz
- Broadcast, point-to-point
- Packet switched?
- Separate wires?
- 64 bytes?
- 1?
- 150 million/sec?
- 9.6 GBps?
- 18 (Dynamic Reconfig.)
- 172.8 GBps
- 32 bytes?
- Switches

Note: 1 GBps (gigabyte per second) = 10^9 bytes per second
Overview: Cache Coherence

- Mechanism to deal with multiple copy of data in a shared-memory environment

- Two basic types of cache coherence protocol
 - Broadcast (Snoopy) Coherency
 - All addresses are sent everywhere
 - Snoop results are computed and combined
 - Lowest possible latency (i.e. Cache-to-Cache)
 - Suitable for low & mid scale, Hard to scale
 - Point-to-point (Directory) Coherency
 - Address sent only to “interested” nodes
 - Directory keeps track of who is “interested”
 - Suitable for generic type of large networks
 - Provides high bandwidth and better scalability
Fireplane Coherency Protocol

- Scalable Shared Memory (SSM) Protocol
 - Low latency in local memory accesses (< 24 nodes)
 - Single snooping (Broadcast based) coherence domain
 - High bandwidth across the network (> 24 nodes)
 - Directory based (point-to-point) coherence protocol
- Kind of Hybrid Solution: Best of both world
- Separate address and data interconnects
Fireplane: Address Bus Implementation

- 2-level bidirectional tree-structure of address repeaters

- AR2 is kind of ordering point
 - CPU0 (AR0) -> AR2 -> AR1(I/O1)
Fireplane: Cache Coherence

- Snoopy Domain
 - MEOSI Protocol
 - Dual Tags

- Cache Tags
 - cM, cE, cO, cS, cI

- Dual Tags
 - dS, dO, dI
 - dT (Temporary)

- Snoop-result signals
 - Shared
 - Owned
 - Mapped
Within a Snooping Domain

If found, Cache-to-cache transfer

Address Request
Broadcast Address

Transfer Data
Read from Memory

Broadcast address bus
Top-level Address Repeater
Address Repeater

Address transaction
Data transfer
Snoop
Memory cycle
Processor
Memory
I/O Interface
Data Switch

If found, Cache-to-cache transfer
Among the Snooping Domains

Address Request
Send Address to Home SSM
Lock line check coherency

Send Response
Broadcast address on home bus
Snoop on home bus
Read data from Memory
Transfer data to home data agent

Update the Mtags
Unlock Line
Count Responses
Transfer data to requester
Move data across center plane
Cache to Cache Transfers

- When data is owned (modified) in a cache
- Inside a Snooping Domain
 - Owning device asserts a snoop result of OWNED
 - Cache sends data directly to requester and memory cycle is ignored
- Between Snooping Domains
 - Three way transfer to supply the data
 - Home SSM -> Owning SSM -> Requesting Data Agent
SYNC @ CS, UofR: Specs

- System Interconnect
 - SunFire V880

- Operating System
 - SunOS 5.8

- CPU Architecture
 - Eight 900 MHz UltraSPARC – III Processors
 - 64 KB L1 D Cache, 32 KB L1 I Cache / Processor
 - 8 MB unified (Data + INS) cache / Processor
 - 16 GB Main Memory
UltraSPARC T1 (Niagara) Processors

Objective
- To run as many as concurrent threads possible
- Maximize the utilization of each core’s pipeline

UltraSPARC Architecture 2005
- SPARC V9 ISA (PSO and RMO Memory Model)

Multicore and Multithreaded
- 4, 6, 8 CPU cores; each with 4 concurrent threads
- Optimized for Power: 72 W at 1.4 GHz

Mainly for server applications
- i.e. Web servers, smaller database applications
Rock Processors (Shipping: 2009)

- Higher per-thread performance
 - Oppose to Niagara: Maximize the # of threads
 - Greater SMP scalability than Niagara family
 - 1st production processor to support transactional memory

- SPARC V9, 64-bit ISA + VIS 3.0 SIMD MISA

- 16-cores/ processors (4 cores/ cluster)
 - Each core can run 2 threads simultaneously
 - Chip power consumption: 250 W at 2.3 GHz

- Target Application
 - Back-end database server
 - Floating point intensive HPC workloads
Fireplane: Conclusion

- Two level of cache-coherence protocol
- Small and mid scale multiprocessors
 - Use snooping protocol
- Large scale multiprocessors
 - Use directory based point-to-point protocol
 - Use Hybrid solution: Best of both world
- Cache-to-cache transfer to hide latency
POWER4: Overview

- System Architecture
 - Processor Microarchitecture
 - Interconnect Architecture

- According to IBM
 - Not only a Chip
 - Also refers to System Structure
Evolution: IBM Microprocessor

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Op Freq</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS/6000</td>
<td>1990</td>
<td>20-30 MHz</td>
<td>RISC based</td>
</tr>
<tr>
<td>POWER2</td>
<td>1993</td>
<td>55-71.5 MHz</td>
<td>8 ins/ cycle</td>
</tr>
<tr>
<td>PowerPC 601</td>
<td>1993</td>
<td>55-72 MHz</td>
<td>32,64-bit</td>
</tr>
<tr>
<td>RS64-II,III,IV</td>
<td>1997</td>
<td>125-750 MHz</td>
<td>Commercial Application</td>
</tr>
<tr>
<td>POWER3,-II</td>
<td>1998</td>
<td>200-450 MHz</td>
<td>2-FP, 3-Fixed function units</td>
</tr>
<tr>
<td>POWER4</td>
<td>2001</td>
<td>1.1-1.3 GHz</td>
<td>Multicore, On-chip L2 cache</td>
</tr>
<tr>
<td>POWER5</td>
<td>2005</td>
<td>1.1-1.9 GHz</td>
<td>SMT, On-die memory controller</td>
</tr>
<tr>
<td>POWER6</td>
<td>2007</td>
<td>3.5-4.7 GHz</td>
<td>65nm, in-order execution</td>
</tr>
<tr>
<td>POWER7</td>
<td>2010</td>
<td>4.0 GHz</td>
<td>Under development, 45 nm</td>
</tr>
</tbody>
</table>
POWER6 (Latest)

- A dual core design
 - Operating frequency: 3.5, 4.2, 4.7 and 5 GHz
 - 64KB L1 INS and Data cache; 4MB L2 shared cache
 - L3 cache: Off Die, 32 MB, Bus BW – 80 Gbps
 - Capable of Two-way SMT operation
 - Scalability: up to 64 physical processors

- POWER5 (Out-of-order) → POWER6 (In-Order)

- POWER6 based products
 - Blade servers: JS12 and JS22 blade modules: 6 cores
 - POWER 575: Up to 448 cores, up to 256 GB RAM/ frame
POWER4: High Level Features

- Extension of 64-bit PowerPC architecture
- 0.18 um – lithography and SOI technology
- “Speed demons” VS “Braniacs”
 - While UNIX based RS/6000 are of later kind
 - POWER4 clearly falls in former category
- Operating Frequency Range
 - 1.1 GHz – 1.3 GHz
- Up to 32-way SMP using POWER4
POWER4: Chip
POWER4: Processor

- Two-way On-Chip SMP
- Core Microarchitecture
 - Speculative superscalar
 - Out-of-order execution
 - Issue: 8 INS/ Cycle
 - Completion: 5 INS/ Cycle
 - In flight: > 200 INS
 - 8 Execution units
 - 2 FP Execution units
 - 2 LD/ST units
 - 3 Fix point Execution units
 - 1 BR Ex, 1 CR Ex unit

POWER4: Die Photograph
POWER4: Core

- Branch Prediction Unit
- Instruction Fetch Unit
- Decode, Crack, Group
- Issue Queues
- LD/ST Queue
- Execution units
 - FP Execution units
 - Fixed Point EX units
 - BR Execution unit
 - CR Execution unit
Conditional Branches

- High performance systems use multi-level branch predictors
- Two aspects of conditional branch prediction
 - Branch outcome: Taken or Not Taken
 - Branch Address: if Taken then to Where?
- What about unconditional branches?
 - Don’t even bother!
 - Compilers are smart enough to deal with them
Decode, Crack, & Group Formation

- INS are split to ensure the high frequency operation
 - Cracking: load with update (index) => Load + Add
- Group: To keep track of program order
 - Also used for imprecise exceptions (group states)
 - Group contains up to 5 IOPs (Internal Operations)
 - Slots are used to preserve the ordering
 - Only one group can be dispatched per cycle
- Dispatch: Into the issue queues (in-order)
- Issue: From issue queue to EX unit (out-of-order)
- Commit: Upon group completion (in-order)
Load/Store Unit Operation

- Crucial to ensure memory consistency in out-of-order machine
- SRQ and SDQ keeps the results till commit
 - Upon group completion SDQ is written to cache
- Hazards in LD/ST Queue (should be avoided)
 - Load hit Store
 - Younger load gets the data from SDQ if an older store is present to the same address
 - In case SDQ doesn’t have data loads are killed and reissued
 - Store hit Load
 - Store checks the LRQ; if younger load found, group is flushed
 - Load hit Load
 - If younger load gets the old data older load shouldn’t get new
Instruction Execution Pipeline

- Instruction flows in groups in program order
- If miss predicted
 - All dependent INS in pipeline are squashed
Storage Hierarchy: Organization

- L1 cache (Sort of directory protocol)
 - Low latency is achieved by low Associativity
- L2 cache (Kind of snoopy protocol)
 - High Associativity reduces the miss rate
- L3 cache
 - Directory is On-chip; Memory is external

<table>
<thead>
<tr>
<th>Component</th>
<th>Organization</th>
<th>Capacity per chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 instruction cache</td>
<td>Direct map, 128-byte line managed as four 32-byte sectors</td>
<td>128 KB (64 KB per processor)</td>
</tr>
<tr>
<td>L1 data cache</td>
<td>Two-way, 128-byte line</td>
<td>64 KB (32 KB per processor)</td>
</tr>
<tr>
<td>L2</td>
<td>Eight-way, 128-byte line</td>
<td>~1.5 MB</td>
</tr>
<tr>
<td>L3</td>
<td>Eight-way, 512-byte line managed as four 128-byte sectors</td>
<td>32 MB</td>
</tr>
<tr>
<td>Memory</td>
<td>—</td>
<td>0–16 GB</td>
</tr>
</tbody>
</table>
L1 Caches

- **L1 Instruction Cache**
 - Single-ported, Cache line: 32-byte

- **L1 Data Cache**
 - Triple-ported, Cache line: 32-byte
 - Two 8-byte read and one 8-byte write per cycle
 - Non-blocking data caches

- **L1 caches are parity-protected**
 - Error causes invalidation and reloading from L2

- **L1 and L2 follow “cache-inclusion” property**

- **Two possible states in L1: Valid or Invalid**
L2 Cache

- Shared unified L2 cache
 - Unified = Data + Instruction
 - Shared between 2 cores
 - 128-byte every 4 cycle
- Data is ECC protected
- Directory protocol with CPU
- Coherency processor
 - L2 and CPU data transfer
 - Fabric controller to CPU
 - L2 directory update
- Snoopy protocol with L3 fabric
MESI Protocol: L1-L2

- Enhanced Version of MESI Protocol (Seven states)
 - I (invalid state)
 - SL (Shared state, can be source to local requester)
 - S (Shared state)
 - M (Modified state)
 - Me (Exclusive state)
 - Mu (Unsolicited modified state)
 - T (Tagged state)
L3 Cache

- L3 Cache
 - L3 Controller (on-chip)
 - L3 Data array (off-chip)
 - 8-way Associativity
 - Block size: 512-byte
- Five coherency states
 - I (invalid state)
 - S (shared state)
 - T (tagged state)
 - Trem (remote tagged)
 - O (pre-fetch data state)
Memory Subsystem: Logical View

- Memory controller
 - Attached to L3 eDRAM
 - Synchronous wave pipeline

- Bus speed
 - 1/3 of CPU speed

- Protection
 - 2-bit ECC correction

- Memory port
 - 4-byte bidirectional
 - Speed: 400 MHz
POWER4 based 8-way SMP

Chip-to-chip fabric

4, 16B bus/ chip

Total BW: 38.4 GBps
POWER4: Multi-chip Module

MCM-MCM fabric

2, 8B bus/ MCM

Total BW:
9.6 GBps
IBM Interconnects: Future Roadmap

- 2+ GHz clock rate for future processors
- Increased parallelism at all levels
- Incorporation of larger caches
Sun Fireplane VS POWER4

Sun Fireplane
- Two level of coherence protocol
 - Snoopy protocol
 - Directory based protocol
- Better Scalability
 - Possible to implement system with 8-96 UltraSPARC – III processors
- Separate network for data and addresses

POWER 4
- On-chip two level of cache
 - L1 (sort of point-to-point)
 - L2 (kind of snoopy)
 - L3 is generally directory based
- Good for mid scale
 - Up to 32-way SMP implementation
- High Speed Design
Sun Fireplane VS POWER4

Sun Fireplane
- **TSO, PSO and RMO Memory consistency model**
- **Network BW**
 - System Clock: 150 MHz
 - 9.6 GBps/ Address bus
 - 172 GBps/ Max possible
- **Peak Memory BW**
 - 2.4 GBps

POWER 4
- **Weakly ordered PowerPC consistency model**
- **Network BW**
 - On/off bus: 600 MHz
 - MCM: 9.6 GBps/ MCM
 - Chip-to-chip: 38.4 GBps
 - L2 BW: 100 GBps
- **Memory Port (400 MHz)**
 - BW: ~ 11 GBps
Sun Fireplane VS POWER4

Sun Fireplane
- CPU: UltraSPARC-III
 - RISC based
 - In-order execution
 - Multiple independent pipeline
 - Clock: 900 MHz

Network Latency
- Addr: 15 sys cy (150 ns)
- Data: Sys cy (14, 9, 5)
 - 93, 60, 33 ns

POWER 4
- CPU: POWER4
 - 64-bit PowerPC based
 - Out-of-order execution
 - Multicore: 2-cores/ chip
 - Clock: 1.1 – 1.3 GHz
 - 2-way SMP for software

Network Latency
- MCM: 10% greater than best case memory access latency
UltraSPARC-III VS POWER4

<table>
<thead>
<tr>
<th>UltraSPARC-III</th>
<th>POWER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINT2000 base/ peak</td>
<td>CINT2000 base/ peak</td>
</tr>
<tr>
<td>470/533</td>
<td>790/814</td>
</tr>
<tr>
<td>CFP2000 base/ peak</td>
<td>CFP2000 base/ peak</td>
</tr>
<tr>
<td>629/731</td>
<td>1098/1169</td>
</tr>
</tbody>
</table>

Source: IBM