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Abstract—
Physical Ising machines rely on nature to guide a dynamical

system towards an optimal state which can be read out as a
heuristical solution to a combinatorial optimization problem.
Such designs that use nature as a computing mechanism can lead
to higher performance and/or lower operation costs. Quantum
annealers are a prominent example of such efforts. However,
existing Ising machines are generally bulky and energy intensive.
Such disadvantages may be acceptable if these designs provide
some significant intrinsic advantages at a much larger scale in
the future, which remains to be seen. But for now, integrated
electronic designs of Ising machines allow more immediate
applications. We propose one such design that uses bistable nodes,
coupled with programmable and variable strengths. The design
is fully CMOS compatible for on-chip applications and demon-
strates competitive solution quality and significantly superior
execution time and energy.

Index Terms—Ising machine, optimization, CMOS accelera-
tors, nature-based computing, quantum annealing

I. INTRODUCTION

The power of computing machinery has improved by orders
of magnitude over the past decades. At the same time, the need
for computation has been spurred by the improvement and
continues to require better mechanisms to solve a wide array
of modern problems. For a long time, the industry focused on
improving general-purpose systems. In recent years, special-
purpose designs have been increasingly adopted for their
efficacy in certain type of tasks such as encryption and network
operations [1], [2] More recently, machine learning tasks have
become a new focus and many specialized architectures are
proposed to accelerate these operations [3], [4]. Much of this
work is to construct a more efficient architecture where the
control overhead as well as the cost of operation becomes
much lower than traditional designs.

In a related but different track of work, researchers are
trying to map an entire algorithm to physical processes such
that the resulting state represents an answer to the mapped
algorithm. Quantum computers marketed by D-Wave Systems
are prominent examples. Different from circuit model quantum
computers [5], [6], D-Wave machines perform quantum an-
nealing [7].1 The idea is to map a combinatorial optimization
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1Recent theoretical works have claimed increasingly strong equivalence
between the two modes of quantum computing [8], [9].

problem to a system of qubits such that the system’s energy
maps to the metric of minimization. Then, when the system
is controlled to settle down to the ground state, the state of
qubits can be read out, which corresponds to the solution of
the mapped problem.

It is as yet not definitive whether D-Wave’s systems can
reach some sort of quantum speedup. But one thing is clear:
machines like these can indeed find some good solutions to
an optimization problem, and in a very short amount of time
too. Indeed, a number of alternative designs have emerged
recently all showing good quality solutions for non-trivial sizes
(sometimes discovering better results than the best known
answer from all prior attempts) in milli- or micro-second
latencies [10]–[12]. These systems all share the property that
a problem can be mapped to the machine’s setup and then the
machine’s state evolves according to the physics of the system.
This evolution has the effect of optimizing a particular formula
called the Ising model (more on that later). Reading out the
state of such a system at the end of the evolution thus has the
effect of obtaining a solution (usually a very good one) to the
problem mapped.

For example, in some systems, the Hamiltonian is closely
related to the Ising formula. Naturally, the system seeks
to enter a low-energy state. In other systems, a Lyapunov
function of the system can be shown to be related to the
Ising formula. In general, these systems can be thought of
as optimizing an objective function (in the form of the Ising
formula) due to physics. Hence, they are generally referred to
as Ising machines. Clearly, unlike in a von Neumann machine,
there is no explicit algorithm to follow. Instead, nature is
effectively carrying out the computation. Ising machines have
been implemented in a variety of ways with very different
(and often complex) physics principles involved. It is unclear
(to us at least) whether any particular form has a fundamental
advantage that will manifest in a very large scale.

Note that these systems can not guarantee reaching the
ground state in practice.2 Nonetheless, some systems find a
good answer with high speed and a good energy efficiency,
as we shall see later with concrete examples. In this paper,
we propose a novel CMOS-compatible Ising machine which
uses circuit elements’ physical properties to achieve nature-
based computation. This design is completely different from
other efforts of using CMOS circuit to build machines that

2Theoretical guarantee in some ideal setup may exist. For instance, adiabatic
quantum computing theory says that when the annealing schedule is suffi-
ciently slow and in the absence of noise (zero kelvin) the system is guaranteed
to stay in the ground state [13].



simulate an annealer. We perform a detailed analysis of the
design and show that it is a compelling design and superior
in many respects to existing Ising machines and accelerators
of simulated annealing.

II. BACKGROUND AND RELATED WORK

We first explain the background of Ising machines and
discuss the state of the art in implementations.

A. Ising model

The Ising model is used to describe the Hamiltonian of a
system of spins.3 The model is a general one that describes a
system with many nodes (e.g., atoms), each with a spin (�i)
which takes one of two values (+1, −1). The energy of the
system is a function of pair-wise coupling (Jij) of the spins
and each spin’s reaction (hi) to some external magnetic field
(�). The resulting Hamiltonian is as follows:

H = −
X

(i<j)

Jij�i�j − �
X
i

hi�i (1)

If we ignore the external field, the Hamiltonian simplifies to

H = −
X

(i<j)

Jij�i�j (2)

This simplified version is more useful for the purpose of our
discussion. Henceforth, when we refer to the Ising model or
formula, we mean Eq. 2.

A physical system with such a Hamiltonian naturally tends
towards low-energy states and thus serves as a convenient
machine to solve a problem with a formulation equivalent
to the Ising formula – provided we can configure parameters
(e.g., Jij) to match that of the problem.

B. Optimization problems and mapping issues

A group of optimization problems naturally map to an Ising
machine. Perhaps the most straightforward problem to map is
(weighted) Max-Cut. Given a graph, G = (V;E), a cut is a
partition of vertices into two sets of, say, V + and V �, where
V � = V − V +.

The Max-Cut problem tries to find a cut such that the
combined weight of the edges spanning the two sets of vertices
is maximum. In other words, the maximum cut is

arg max
V +2P(V )

� X
(i;j)2E;

i2V +; j2V −

Wij

�
(3)

where Wij is the weight of edge (i; j). (We will refer to the
resulting

P
Wij as the cut value in this paper.)

It is easy to see the resemblance between Eq. 2 and 3. In
fact, if we set the coupling weight (Jij) to be the negative of
edge weight (−Wij) then the Ising formula is simply twice the
negative cut value plus a problem-specific constant (

P
Wij)

as follows (for notational simplicity, for i ≥ j we set Wij to
0):

3Though commonly called the Ising model, the model itself existed before
Ernst Ising (read “Easing”) solved analytically a one-dimensional system.

H = −
X

Jij�i�j =
X

�i=��j

Wij�i�j +
X
�i=�j

Wij�i�j

= −
X

�i=��j

Wij +
X
�i=�j

Wij = −2
X

�i=��j

Wij +
X

Wij

(4)

Hence if the machine finds the ground state of the Hamil-
tonian, we have the maximum cut. Finding out the maximum
cut of an arbitrary graph is an NP-hard problem. Practical
algorithms only try to find a good answer. Similarly, existing
Ising machines (including our design) are all Ising sampling
machines that typically provides a good sample of a low-
energy state, with no guarantee of optimality.

Because of the trivial mapping of the Max-Cut problem to
the Ising formula, designers of Ising machines, often focus
on this optimization problem. However, other optimization
problems can also be mapped to an Ising machine. Indeed,
every problem in the original NP-complete set [14] can be
expressed by an Ising formulation specifically designed for
that problem [15]. Note that Ising formulation may require
more nodes than that of the original formulation and usually
requires additional time to compute coupling coefficients in
the Ising formulation from the original formulation. This
transformation is largely straightforward and the need for it
is problem-dependent and thus shared by all Ising machines.

Another transformation, however, may be necessary depend-
ing on the machine’s coupling topology. While we will get into
the details as we discuss the machines, it is worth emphasising
up front the significant impact of the issue. If a machine
has only local connections, then spins mapped to nodes not
directly connected have to rely on additional, auxiliary spins.
An alternative description is that if a machine has a limited
connection topology, then the graph of a problem needs to
be transformed (e.g., using minor embedding [16]) into a new
graph that observes the limitation imposed by the machine.
Consequently, a graph of size N may contain many more
nodes (e.g., N2

2 ) after the transformation. Fig. 1 illustrates
these transformations in the process of solving a problem on
an Ising machine.

C. Quantum mechanical and optical Ising machines

There are many natural systems that can be described by
the Ising model. Take two existing systems with relatively
large footprints for example. D-Wave’s quantum annealers
use superconducting qubits as the basic building block. These
bits are then coupled together with couplers forming a con-
nection topology known as the Chimera graph. This is an
important architectural constraint that limits the typology of
the problem that can be mapped to the machine. As we
will see later, despite supporting nominally more than 2000
spins, many of our benchmarks can not be mapped to the
machine. Another disadvantage of the system is the cryogenic
operating condition (15mK) needed for the quantum annealer.
This requirement consumes a significant portion of the 25KW
power of the machine [17].
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Fig. 1. High-level overview of a generic Ising machine workflow solving (weighted) Max-Cut problem (box-1). Ising formulation (box-2) is a required
property for solving diverse problem sets. Minor-embedding (box-3) is a topology-dependent design factor and not required for all Ising machines. Box-4a
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Coherent Ising machines (CIMs) are another recent example
of Ising sampling machines [10], [18]–[21]. In a CIM, an
optical device called OPO (optical parametric oscillator) is
used to generate and manipulate the signal to represent one
spin. Unlike in a D-Wave Ising machine, the coupling between
spins in CIM is relatively straightforward in principle. As a
result, CIM implementations have always supported all-to-all
coupling. The authors also emphasized that the 2000-node
CIM is therefore far more capable than D-Wave 2000Q which
can only map all-to-all problems of size 64 [22].

CIM is not without its disadvantages. To support 2000 spins,
kilometers of fibers are needed. Temperature stability of the
system is thus an acute engineering challenge. Efforts to scale
beyond the currently achieved size (of about 2000) have not
been successful as the system runs into stability problems.
Also worth noting is that the coupling between nodes is – at
least in the current incarnation – implemented via computation
external to the optical cavity. There is a rather intensive
computational demand (100s of GFLOPS) [23]. Every pulse’s
amplitude and phase are detected and its interaction with all
other pulses calculated on an auxiliary computer (FPGA). The
computation is then used to modulate new pulses that are
injected back into the cavity. Strictly speaking, the current
implementation is a nature-simulation hybrid Ising machine.
Thus, beyond the challenge of constructing the cavity, CIM
also requires a significant supporting structure that involves
fast conversions between optical and electrical signals.

These room-sized Ising machines are certainly worthwhile
creations for the sake of science. In particular, investigations
are needed to see whether the theoretical underpinning for
these machines is relevant in practice. As we shall see later,
both models have significant room for improvements.

D. Electronic oscillator-based Ising machines

A network of coupled oscillators is another physical im-
plementation of an Ising machine. After sufficient time, the

coupled oscillators will synchronize forming stable relative
phase relationship.4 While many factors (e.g., amplitude,
stochastic noise) will influence the phase of each oscillator,
the following formula is a simplified steady-state description
of phase relationship for N oscillators:

d

dt
�i(t) =

NX
j=1

Jijsin
�
�j(t)− �i(t)

�
(5)

Note that this simplified model ignores certain elements (e.g.,
diffusion due to noise) and is thus an approximation of a
more complicated reality. Given such a differential equation
describing a dynamic system, it can be shown that a Lyapunov
function in the following form exists [11]:

H
�

�(t)
�

= −
X
i<j

Jijcos
�
�j(t)− �i(t)

�
(6)

This means that the system will generally evolve along a
trajectory that minimizes the Lyapunov function [25]. As a
result, the system’s stable states represent good solutions that
minimize the right hand side of Eq. 6. On a closer inspection,
we see the resemblance of Eq. 6 and the Ising model (Eq.
2). Specifically, when all phases (�i) are either 0 or �, the
two formulae are the same.5 A number of oscillator-based
Ising machines have been recently proposed [11], [26], [27].

4The observation of such synchronization dates back to at least the 17th
century when Huygens observed synchronization of two pendulums [24].
Synchronization phenomenon is the subject of research efforts in a wide
variety of fields. Large-scale synchronization of firefly flashings and rhythmic
applause in a large crowd of audiences are but two examples in the general
underlying principles beyond mechanical objects.

5In fact, the formulation of Eq. 6 is similar to the classic XY spin model
(again ignoring external field): each spin can point to any direction along an
“XY” plane and thus can be represented by a phase (�i). Ising model is thus a
special case of the XY model. In other words, a system of coupled oscillators
form an “XY machine” (not an Ising machine). An XY state can be quantized
into an Ising state (�i = 0; �) in a number of different ways. For the sake of
this paper, let us simply imagine direct quantization which rounds the phase
to the nearest multiple of �.
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All these examples use LC tank oscillators. While this is a
common practice for analog circuit designers and relatively
straightforward for discrete-element prototypes, the use of LC
tanks introduce non-trivial practical challenges in integrated
circuit (IC) designs. The lack of high quality inductors and
the usually high area costs of incorporating them are common
challenges for integrated RF circuitry. These desktop Ising
machines are a significant improvement (at least in size)
over room-sized Ising machines. But, for genuine wide-spread
applications, we believe a clean-slate IC-focused design is a
valuable direction to pursue. Needless to say, we believe there
will be significant cross-pollination of different approaches
and future practice may very well be a confluence of multiple
styles of Ising machines.

E. Accelerated simulated annealing
Finally, a set of chips have been designed to accelerate

simulated annealing [28] or a variant of the classic algorithm.
These chips are often described as having tens of thousands
of spins [29], [30]. In these designs, the spins are virtual in
that they are bits in memory and manipulated by an algorithm
(simulated annealing). These machines are specially built to
accelerate that algorithm. Hence we refer to such a machine
as an Accelerated Simulated Annealer or ASA for short.

These ASAs differ fundamentally from physical Ising ma-
chines. In a physical Ising machine, nature guides the spins
to a preferable state according to physical laws. Thus, the
machine can achieve ultimate speed and energy efficiency
in principle – though it is entirely possible that a particular
physics exploited is slow or energy-intensive to control; or it
may be expensive to enable the physics, such as in creating
the cryogenic environment required for quantum annealing.

F. Taxonomy
Existing Ising machines can be categorized based on

whether they use physical or virtual spins. Note that this aspect
is more of a continuum than a binary distinction. In the case
of CIM, for instance, the interaction of the spins happens
physically in the fiber. But the appropriate amplitude of
feedback is controlled using external calculation. Fig. 2 shows
this high-level classification, where the horizontal dimension
summarizes the contrast between physical and virtual systems.

A second important differentiator of Ising machines is
the connection topology. As discussed before, with a local
connection, there is a limitation on the kind of problems
that can be mapped to the machine. When a problem does
not map directly, a transformation is needed to convert the
problem, usually by requiring many auxiliary nodes. The
nominal number of spins a machine provides is therefore a
very poor representation of the machine’s capability. We will
provide a quantitative analysis on this point in Sec. IV. At this
point, we qualitatively place existing Ising machines based on
their connection topology on the vertical axis in Fig. 2.

III. ARCHITECTURE OF THE PROPOSED ISING MACHINE

In this section, we start with a simplified system to provide
some intuition about how common electronics can also make
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Fig. 2. High-level taxonomy of Ising machine design space showing a
continuum of capabilities. ASA� and ASA� refer to machines in works [29]
and [30] respectively.

a physical Ising machine (Sec. III-A); then describe in more
detail the system architecture (Sec. III-B); and finally present
theoretical analysis of the system’s optimum-seeking behavior
(Sec. III-C).

A. Overview & intuition

As already discussed before, existing physical Ising ma-
chine have different strengths and weaknesses. The room-sized
machines are vehicles for continued scientific exploration of
the underlying principles. It is particularly useful to show the
difference between ideal theoretical capabilities and what can
be achieved in practice. For instance, according to quantum
adiabatic theory, the system’s Hamiltonian needs to be changed
sufficiently slowly to guarantee that the system stays in ground
state. In practice, D-Wave’s quantum annealer appears to offer
a fixed annealing schedule.6 Operated as such, the quantum
annealer predictably provides sub-optimal solutions, as we will
show later.

The question then becomes: can we build better (smaller,
less power-intensive) physical Ising machines. And the
answer is: yes, with electronics. In digital designs, electronic
devices are often thought of as no more than the building
blocks of functional units. But their behavior is also subject to
physical laws that can be leveraged to perform nature-based
computation. As it turns out, practical physical Ising machines
can be built out of common devices such as capacitors and
resistors. We start with one such simple design to show
the working principle. Of course, this design is not yet a
high-performance system. But as we will show later, with
a proper architecture and careful design of key elements, a
physical Ising machine built out of electronics is much more
compelling than existing proposals. Additionally, it can be
fabricated entirely in a CMOS process.

Intuition: In the Ising model, when two nodes (say, i, and
j) are strongly and positively coupled (i.e., Jij is large and

6We are unable to find ways of adjusting this schedule.
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positive), their spins are likely to be parallel (� i = � j ). In
this way, the term� J ij � i � j will contribute to lowering the
energy. Conversely, a strong negative coupling (J ij is large
and negative) will likely lead to anti-parallel spins (� i = � � j ).
Finally, weak coupling (jJ ij j is small) suggests that the two
spins are more likely to be independent.

This behavior can be easily mimicked with resistively cou-
pled capacitors. Consider representing a node with a capacitor,
where the polarity of the voltage across it represents the spin
of the node. More speci�cally, in Fig. 3, if a node has a
spin of “-1”, the voltage at the upper terminal (top plate of
the capacitor, labeled “+”) is lower than that of the lower
terminal (bottom plate of the capacitor). We can then connect
nodes with different resistors. A strong coupling means high
conductance (or low resistance), so that voltages of two nodes
can more easily equilibrate. So, we setRij / 1=Jij . The
sign of coupling can also be achieved by connecting either
the same or opposite polarity in the corresponding capacitors.
Fig. 3 shows a simple 4-node system mapped from a logical
graph of a Max-Cut problem with the labeled edge weights.
7 It is not dif�cult to see that the solution should separate
the nodes intof 1; 4g and f 2; 3g. Let's see how the machine
functions.

The graph translates to couplings in a straightforward man-
ner: Rij = R=Jij = � R=Wij , where the sign indicates
polarity of coupling. For instance, nodes 1 and 4 (W1;4 = � 1)
are parallel/positively coupled (R1;4 = � R=W1;4 = R).
So a resistorR connects the upper terminals of nodes 1
and 4 and another connects the two lower terminals. Nodes
1 and 3 (W1;3 = +0 :5) are antiparallel/negatively coupled
(R1;3 = � R=W1;3 = � 2R), so a 2R resistor connects the
upper terminal of Node 1 and the lower terminal of Node 3,
and another2R resistor connects their remaining terminals.

Fig. 3. Sample Max-Cut problem mapping to a 4-node resistive Ising machine
(left) and corresponding solution, cut value of+4 :5, (right).

Once initialized with random polarities, these coupled ca-
pacitors can indeed seek some equilibrium as shown in Fig. 3
(right). In this example, the polarity of the capacitors at
equilibrium indeed gives the best solution to the Max-Cut
problem.

While this oversimpli�ed design con�rms the intuition that
it can �nd a solution, it is far from a robust design. For

7Recall the coupling and edge weight relation,J ij = � W ij , in the Ising
formula.

example, depending on the initial state and system scale,
the voltages at equilibrium can be0V or just too low for
reliable readout. The equilibrium is also temporary because
leakage will make all nodes decay to0V eventually, rather
than staying at the desired voltage levels. Nevertheless, the
resistively-coupled capacitor network is at the core of our
proposed Ising machine. To induce and maintain the nodes at
equilibrium, we can introduce a local feedback unit to make
the node voltages bistable. For brevity, we will refer to such
a Bistable, Resistively-coupled Ising Machine as BRIM.

B. Architecture of an integrated design

We now discuss the architecture of a more complete system
designed for integrated circuits. The system is illustrated in
Fig. 4 and consists of:¬ bistable nodes (N1 to N4) and their
digital interface (DFF 1-4);­ coupling units connecting the
nodes (CUij ); ® programming units to con�gure coupling
weights (including: memory, multiplexers, digital-to-analog
converters, and the column control systems); and¯ annealing
control. We discuss each in turn as follows:

Fig. 4. Block diagram of BRIM system components. Nodes areN i and
coupling unitsCUij . The multi-colored interconnecting links are wires.

1) Nodes: The bistable nodesN i are shown at the left
side of Fig. 4. In Fig. 5 we show a more detailed illustration
of one node. Recall that in the simpli�ed circuit (Fig. 3) the
capacitor's voltage can be too low (even zero) as compared to
electronic noise level to reliably indicate the node's spin. A
feedback circuit is therefore needed to stabilize the voltages at
the desired levels (e.g., � Vdd ). Two conditions are required:
¬ the capacitor should be charged according to its polarity
when the voltage is between� Vdd and+ Vdd , and discharged
when the voltage exceeds this range; and­ at low voltages,
the feedback circuit should supply a low current in order not
to overwhelm signals coupled from other nodes.

Combining these considerations, we can design a feedback
circuit with the current-voltage (IV) curve as shown in Fig. 5.
Because of the slanted “Z” shape of the IV curve, we call such
sub-system a ZIV diode. As seen in the IV curve, for capacitor
voltages between� Vdd and Vdd , the ZIV diode acts as an
active element charging its voltage closer to� Vdd . Conversely,
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for voltages outside the range, the ZIV diode acts essentially
as a linear resistor to discharge the capacitor.

Each node is supplied with two pairs of switches to set
the capacitor voltage to a known spin state. This is useful for
speci�c initialization or to change the system state as described
in the “Annealing Control” (Sec. III-B4). Finally, the spin of
the node can be read out by a digital latch (e.g., a D �ip-�op)
connected to the ZIV diode'sV+ terminal. This converts the
spin to a bit (1 or 0).

Fig. 5. Simpli�ed schematic of one BRIM node (left) and ZIV diode's IV
characteristic (right).

2) Coupling units: With an array of BRIM nodes, we
have the �exibility to couple them in any desired topology.
As we will discuss quantitatively later, an all-to-all coupling
is computationally more useful and is thus our choice.

In our system, the coupling is (uni)directional. There are two
separate coupling units (CU) connecting nodeN i to N j : CUij

andCUji . This directional coupling is achieved by connecting
the node capacitor through a voltage buffer before sending
to the CU. The coupling coef�cient of both directions are
of course the same (J ij = J ji ). In principle, a bidirectional
coupling has similar effects and is a simpler design point.
But, empirically, we found directed coupling tends to produce
better solution quality at the expense of area. A more detailed
analysis as to the reason for this phenomenon is left as future
work.

Because of the directed coupling scheme, each node has
separate input and output terminals (two each for fully-
differential coupling), as shown in different colors in Fig. 4.
Similarly, each CU also has four input/output terminals, with
one pair of transistors connecting the same polarity input/out-
put nodes (parallel coupling) and another pair to establish anti-
parallel coupling, as shown in Fig. 6.

Fig. 6. Schematic of BRIM coupling unit. Color schemes are matched to
system-level block diagram in Fig. 4. CS is column selector.

The two pairs of transistors in the CU are biased in triode-
region to act as variable/programmable resistors. Depending
on the polarity of the coupling coef�cient (J ij ), only one pair
of the transistors are turned on and biased to an appropriate
non-zero VGS . For example, to establish a negative (anti-
parallel) coupling, the gates of the upper-right and lower-left
transistors are biased to a non-zero voltage (Vdac ), while the
other pair of transistors are biased at0V (GND).

3) Programming units: Both the initial nodal values and
the coupling resistance are programmable. Programming of a
resistor is achieved through a transistor with adjustable gate
voltage. To the right of the coupling unit array in Fig. 4 is
the programming array. This array consists of digital memory
for storing the weights which drive an array of digital-to-
analog converters (DACs). A small amount of such DACs
are suf�cient to program all the coupling units in a time-
interleaved fashion per column. In such con�guration, we need
corresponding column selectors and pull-down logic as shown
below the coupling units in Fig. 4.

4) Annealing control: With the basic network of coupled
bistable nodes, the system can reach the local optimum deter-
mined by the initial state. Two commonly used mechanisms
for annealers are incorporated to allow the system to escape
local optima. First, the coupling strength is globally increased
over time. In this way, at the very beginning, the machine is
only weakly coupled, rendering the energy landscape relatively
�at. This helps the system explore the landscape in a coarse
granularity. We choose an exponential annealing schedule
because (a) it is a common practice, and (b) it can be
conveniently achieved by discharging an appropriately sized
capacitor as the global annealing scheduler. The voltage from
this capacitor is then used to control the variable gain buffer
in each node to achieve the change in coupling strength.

Second, we also adopt a similar strategy as that used in
simulated annealing. By performing a “spin �ip” of select
nodes (i.e., to change the spin to its opposite value using the
switches in 5), we can enter a neighboring state in the global
phase space. This allows the system to escape the current basin
of attraction and explore new regions. In simulated annealing,
the probability of such bit �ips is a function of both energy
difference due to the bit �ip and the current temperature. For
implementation convenience, we only use the temperature to
decide the probability/frequency of spin �ips. The temperature
follows the same exponential annealing schedule discussed
above. In other words, the frequency of spin �ips decays
exponentially.

With these supports, our BRIM is used similarly to other
Ising machines: �rst, program the weights; then, select the
annealing time; and �nally, read out the state of the nodes
after the completion of the annealing schedule. Note that
the system can be used in a number of different ways: the
annealing time can be adjusted; the spin �ip frequency can be
tuned; the machine can also be used together with a software-
based search algorithm (e.g., simulated annealing), perhaps by
searching a subspace.
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C. Theoretical analysis

It is often desirable to show some theoretical foundation
for nature-based computing machines. We present a Lyapunov
stability analysis of BRIM to show its ability for optimum-
seeking. Fig. 7 shows a simpli�ed nodei in BRIM where other
nodes are coupled intoi from the right. Writing the current
equation, we get Eq. 7, whereJ ij is the effective conductance
of the coupling taking into account the polarity of the coupling:

dvi

dt
=

1
C

(I in � I ZIV ) =
1
C

2

4
X

j 6= i

J ij vj � gZIV (vi )

3

5 (7)

Fig. 7. Right: Single BRIM node unit coupled to other nodes. Right: Potential
well of the bistable node.

BRIM is a continuous time system where the state is
summarized byv(t) = [ v1(t); v2(t); ::: ; vN (t)]T . (For brevity,
in the following,vi (t) will be abbreviated asvi .) Recall that in
Lyapunov analysis, if a functionH (v) can be found such that
dH (v)

dt = 0 at pointve and dH (v)
dt < 0 in the region aroundve,

then ve is the equilibrium point [25]. In our case, this point
is the solution to the equation setdv i

dt = 0; i = 1 ::N . In
other words, once the system enters a region, it will inevitably
evolve towards loweringH (v) (because its time derivative is
negative) until it reaches the equilibrium pointve.

To ensuredH (v)
dt is non-positive, we can construct it to be

in a negative square form. This can be achieved by imposing
the following construction rule.

@H(v)
@vi

= � �
dvi

dt
; � > 0 (8)

Following the chain rule, it is not dif�cult to see that:

dH (v)
dt

=
X

i

�
@H(v)

@vi

dvi

dt

�
= � �

X

i

�
dvi

dt

� 2

(9)

One choice of a Lyapunov function satisfying the conditions
in Eq. 8 is shown in Eq. 10, whereP(vi ) is obtained from
gZIV (vi ) by integration overvi .

H (v) =
�
C

�
�

X

i<j

J ij vj vi +
X

i

P(vi )
�

(10)

It is important to notice that the “Z” shape ofgZIV (v) will give
P(v) a double-well pro�le (as shown in Fig. 7-right) with two
stable equilibrium points at voltages corresponding to two non-
trivial zero-crossings of the IV curve (e.g., vi = � 1V ) and a
saddle point atvi = 0V . Given the double-well pro�le of
P(v), the state of a stable solution will consist of voltages

at (or at least very close to) these equilibria (e.g., � 1V ).
Thus, the second term of Eq. 10 will be (close to) a constant.
Consequently, minimizingH (v) is equal to minimizing the
�rst term �

P
i<j J ij vi vj , which is the Ising formula.

Note that this analysis does not guarantee that the system
will converge to aglobal minimum as it depends on the
energy landscape and initial conditions. This is similar to
other annealers: None has strong guarantees for reaching
ground state in a typical usage scenario (as opposed to ideal
conditions) or in an ef�cient manner. For example, it is shown
that simulated annealing can reach ground state in a system
with a �nite phase space. However, the time it takes to do so
may be longer than enumerating the space [31].

IV. EXPERIMENTAL ANALYSIS

In this section, we provide some experimental analysis of
BRIM by

1) Comparing Ising machines at a high level (Sec. IV-C);
2) Discussing architectural design choices (Sec. IV-D); and
3) Showcasing a discrete-component prototype (Sec. IV-E).
First, we describe the machines (Sec. IV-A) the benchmarks

(Sec. IV-B) used in the analyses.

A. Ising machines

We compare BRIM to 4 other machines using both physical
and virtual spins. We use results reported in literature when
direct measurement or modeling is unavailable.

1) D-Wave: we use 2000Q which is the latest quantum
annealer [32]. We launch jobs using the API provided
by D-Wave [33]. For each graph problem, we collect 50
samples.8

2) CIM: is an optical Coherent Ising Machine [10]. There
is no known public access to the actual hardware and
no model available for simulation. Thankfully, there are
reported results for two commonly used benchmarks that
allow us to make meaningful comparisons.

3) OIM: is an electronic Oscillator-based Ising Ma-
chine [11]. For simulation, we use the Kuramoto model-
based code provided in [11].

4) ASA: refers to a number of related designs of Acceler-
ated Simulated Annealers [29], [30]. These accelerators
use virtual spins and are straightforward to model based
on the description in literature. We focus on one with
30,000 nominal spins. In this design, the coupling fol-
lows a near-neighbor pattern dubbed the King's graph.
All nodes are grouped into 4 groups. Every annealing
step (0:22�s ), nodes in one of the groups will process in
parallel: they read off neighbor's spin and the associated
weights to compute whether keeping the same spin or
inverting its current spin provides a lower energy in
the neighborhood. In addition, random bit �ips similar
to those in standard simulated annealing algorithms are
also adopted.

8In terms of timing, we do not specify any constraints, and adopt D-Wave
default values. Speci�cally:20 �s , 198�s , 21 �s , and11:7 ms respectively
for annealing, data readout, inter-sample delay, and qubits programming [34].
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As explained in Sec. II (box 3 of Fig. 1), machines without
all-to-all coupling (D-Wave and ASA) require preprocessing
of input graph through minor embedding [16]. This process
currently takes signi�cant time on a conventional computer
(more details in Sec. IV-D) and can often fail for larger
graphs. ASA uses the King's graph which is even more limited
than the Chimera graph in D-Wave, the minor embedding
process takes even longer time to complete and results in more
physical nodes needed. In our high-level analysis, we ignore
the signi�cant time needed for this preprocessing.

BRIM is modeled using Eq. 7. We perform simulations
using MATLAB's nonstiff, single step, 5th-order differential
solver (ode45). Finally, we also performed the classic Sim-
ulated Annealing (SA) [35] algorithm as a reference using
MATLAB. The execution time is measured on server cluster
nodes of Intel Xeon Platinum 8268 CPUs at 2.9GHz with
371GB of RAM.

B. Benchmarks

To compare these systems, we use a set of popular graphs
called “Gset” (and their derivatives) with diverse node sizes
and edge densities. These graphs are just weighted, undirected
graphs and not associated with any speci�c problem. They nat-
urally correspond to an Ising formula. Thus, we are comparing
different machines optimizing the same set of Ising formulae.

Because of the direct mapping between an Ising formula
and the Max-Cut problem, and that many algorithms have
been developed for optimizing Max-Cut, it is convenient for
researchers, especially Ising machine designers, tointerpret
these graphs as specifying a Max-Cut problem, which we
follow in this paper. Note that this does not mean we can
only solve a Max-Cut problem as already discussed in Sec. II.

The graphs we use can be divided into the following groups:

1) Regular graphs: We use the original Gset graphs from
Stanford [36]. These graphs have between 800 and
20,000 nodes. The edges as well as the weights of
such edges, were generated probabilistically, sometimes
between +1 and -1, and sometimes all +1. We only
use those graphs with less than 2000 nodes in our
experiments.

2) Small graphs: Although supporting nominally 2048
spins, D-Wave's machine can not map even the smallest
graph in Gset. We therefore generate graphs with smaller
node sizes (e.g., 120) and/or edge densities so that
they can be successfully map onto D-Wave. For this
purpose, we used rudy, a machine-independent graph
generator [37], which is the same generator used to
produce the “Gset” graph suite.

3) Tiny graphs: Finally, we also generated fully-connected
graphs with random edge weights, and node sizes rang-
ing from 16 to 32 (in increments of 4). Each node size
has 20 sample graphs, for a total of 100 graphs. For
these graphs, we are able to enumerate all possible spin
combinations to determine actual maximum cut.

C. High-level comparison

It is important to keep in mind that Ising machines are
far from mature. Early designs and prototypes are necessarily
experimental in nature and thus lack the polish of, say, a
conventional architecture. Much of the performance difference
may be due to the art of prototyping rather than the fundamen-
tal science of the mechanism being exploited. This is perhaps
especially the case for D-Wave, as in our comparison, it is the
only actual hardware that we have access to. (CIM and OIM
both have hardware prototypes but are not accessible to us.)

We start with a crude, high-level comparison of different
Ising machines. There are several practical factors that make
this comparison crude and incomplete. First, there is no single
problem that can be measured on all machines. This is primar-
ily because CIM only reported raw data on a very speci�c set
of benchmarks and we are unaware of any reliable model of
the physics that is publicly available. Second, the workload
of optimization usually allows tradeoff between speed and
quality of the solution. Ideally, we will �x one metric (say,
execution time) and compare the other (quality of solution).
But in some cases, such control is unavailable to us. Third, the
execution result depends on initial conditions. So any single
run is subject to random chances. The common practice of
using these machines is doing multiple runs and taking the
best solution, which we follow. But this value should still be
regarded as a random variable.

1) Room-sized machines:With these caveats in mind, Ta-
ble I shows the estimated power, chip area (when applicable),
and the execution time and solution quality of a few work-
loads. The cut value itself changes a lot with the workload.
Therefore, for solution quality, we use the distance from the
(presumed) ground-state solution (the lower the distance the
better). This is a much more stable metric. We use the best
reported cut value anywhere as the (presumed) ground-state.

TABLE I
HIGH-LEVEL COMPARISON OF DIFFERENTISING MACHINES. TimeIS
ANNEALING TIME . Dist. IS SOLUTION DISTANCE FROM BEST. SMALL

GRAPHS AVERAGE SOLUTION: 374. TINY GRAPHS AVERAGE SOLUTION:
23. G22AND G39 BEST SOLUTIONS: 13359 [38]; 2408 [39].

Parameters D-Wave CIM OIM ASA BRIM
Power (W) 25K 210 - � 1 � 250m

Area (mm 2 ) - - - 4:3 � 5:5 � 5
Effective Spins 126 2000 - 160 2000

G22 Dist. - 46 56 - 46
Time - 5 ms 6 ms - 0:25 �s

G39 Dist. - 47 66 - 46
Time - 5 ms 6 ms - 0:25 �s

Tiny Graphs Dist. 6 - 0 0 0
Time 20 �s - 20 �s 20 �s 20 �s

Small Graphs Dist. 12 - 0 7 0
Time 20 �s - 20 �s 20 �s 20 �s

Avg. Gset Dist. - - 9:7 - 2:6
Time - - 0:8 ms - 2:2 �s

First, we look at CIM usingG22andG39because these are
tested on CIM and reported (Fig. 3 of reference [10]). These
graphs cannot be mapped on D-Wave. For other machines,
we try to match CIM's solution quality and show execution
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time. We see that BRIM can obtain similar quality solutions
4 orders of magnitude faster with a power consumption also
about 4 orders of magnitude better. Here, we model a 2000-
node BRIM built with 45 nm CMOS technology with all-to-all
connections.9

The next two rows show small- and tiny-graph comparisons
intended to contrast D-Wave to others. Here, because D-
Wave's current interface allows only �xed annealing time,
we use the same annealing time for all machines. Recall that
these are the best answers in 50 runs for each. We see that in
these cases BRIM always achieves the best result among all
machines, while D-Wave does not.

Fig. 8. Performance (solution quality) for Ising machines under test. All
systems have20 �s annealing time. Solid lines represent averages, and shaded
regions represent range.

In the case of tiny graphs, we can enumerate and verify that
BRIM, OIM, and ASA always reach the ground state. Yet,
even for these tiny graphs, D-Wave does not reach the ground
state, with thebest solution having a distance of 6. A more
detailed view of the solution quality can be seen in Fig. 8. ASA
and BRIM can both achieve ground state often. But BRIM can
do so with a higher probability (66%) than ASA (25%). These
are concrete examples where the theoretical ability to reach
the ground state for an Ising machine is just that: a theoretical
ability.

To sum, we see that the room-sized machines (CIM and
D-Wave) do not show any tangible advantage in solving
optimization problems. D-Wave can only map the smaller
problems due to the connection limits. Even on these smaller
problems, its solution quality trails behind others. Recall this
limited connection means additional compute time to perform
minor embedding, which at the moment takes5s, on average.
CIM is less power-hungry and can map bigger problems due
to its all-to-all connections. Nevertheless, there is no tangible
advantage in any �gure of merit. Again, these machines may
(or may not) prove useful for scienti�c exploration and may
(or may not) show some qualitative superiority at some other
scale or at a future time.

9For a coarse grain, order-of-magnitude estimate;¬ Area from preliminary
Cadence layout shows CUs are1 �m � 1 �m each, a node is9: 5�m � 9 �m ,
and a DAC is2 �m � 1 �m . ­ Power for a 6-node system (Fig. 12) shows
620�W . The Gsets (Table I) are all sparse (with 16.4 edges/node ratio), we
simply extrapolated to250mW for 2000-node BRIM.

The most important take-away point is that just because
the machine leverages nature to perform computation does
not necessarily make it ef�cient. Much engineering diligence
is needed to convert some theoretical possibilities to tangible
practical bene�ts.

2) Electronic designs:Next, we look at OIM. While the
current OIM prototype is a desktop machine, in principle it
can be scaled down in size and up in frequency. The primary
unknown is to what extent the nodes can scale down and
still operate like ideal LC-tanks. For this study, we assume
a 100MHz frequency. Admittedly, this is nothing more than a
rough guess. We see that OIM is perhaps comparable to BRIM,
though subjectively, we feel that the practical challenges are
far more daunting than in BRIM.

Finally, we compare ASA with BRIM. ASA is essentially
a specialized computer doing algorithmic search for better
cut values. Clearly, ASA takes advantage of the tremendous
cumulative improvements of CMOS technology to provide
relatively fast and ef�cient computation. However, it is still
a modi�ed von-Neumann machine (with its only program
hardwired). In contrast, BRIM is a physical Ising machine
where nature is performing the computation. Indeed, here, we
see that to get similar quality solutions on small graphs, BRIM
is still producing better results while consuming a tenth of the
power, with a 5x lower area cost, and providing 12x more
spins. It is tempting to think that the area comparison is unfair
because ASA offers a large number of nominal spins. We will
show next that the nominal number of spins is an extremely
poor, if not useless, metric.

3) Recap: We see that:¬ for the scale of problems we
are discussing, room-sized machines are not advantageous;­
ASA, OIM, and BRIM are three possible candidates for chip-
scale applications with perhaps different strengths. We look at
these models in more detail next.

D. Detailed analyses

1) The impact of topology:We hope by now it is starting
to be clear that BRIM is a compelling design. Next, we want
to get into details to understand some of the intrinsic strengths
that made it a compelling design. We �rst discuss an important
issue in Ising machine architecture. As already mentioned,
when an Ising machine uses a more local coupling network, it
has a more limited ability to map problems. Many problems
would need far more physical nodes than logical nodes in
the problem. As shown in Fig. 9, even with an edge density
of only 6%, it takes about 1600 nodes (in D-Wave's Chimera
con�guration) to map a problem of size 126. Worse still, many
nominally unused spins cannot be used due to their location.
In fact, no size 127 problems we tried can be mapped to the
2048 nominal nodes. Moreover, it takes up to 10 seconds to
perform this minor embedding for Chimera (and even longer
for King's graph). This is much longer than the annealing
itself and more than needed to get a better solution using
conventional simulated annealing. Finally, the auxiliary spins
degrade the machine's ability to �nd good solutions. As we
saw in Table I, D-Wave and ASA have trouble reaching the

9



ground state for small graphs. All in all, at the moment, we
see no evidence that using local connections (at least these
specific ones) is helpful in any practical way.

Fig. 9. Minor-embedding [40] mapping for diverse graphs. Y-axis is log scale.
Left: Total physical nodes required for diverse logical node sizes. Right:
Range of embedding time. NN is 20,000-spin Nearest-Neighbor [29], KG is
30,927-spin Kings-Graph [30], CH is 2048-spin Chimera.

2) In-depth comparison: Next, we look at a single graph
problem (G22) to study ASA, OIM, and BRIM more in-
depth. In Fig. 10, we show the resulting cut value as different
machines are given different annealing time. We add simulated
annealing (SA) running on a workstation to this mix. Each
dot’s vertical coordinate represents the final cut value (higher
is better) while its horizontal coordinate shows the annealing
time. The range of annealing times are chosen such that the
quality of the solution fits into roughly the same band.10

Fig. 10. Solution quality measured as max-cut value (higher is better) against
total annealing time. ASAU means upper-bound, while ASAR means realistic.

An important point needs to be made about ASA. The
30,000 nominal spins can not accommodate G22’s 2000
logical nodes. We thus create two variants instead, both better
than the actual design. First, we create an idealized model
where it supports all-to-all connection and can update all nodes
sequentially, but all done in one annealing step. Note that this
is intended as a very loose upper-bound of performance for
the same kind of machine, and labeled as ASAU in Fig. 10.
Second, we take the reported improvement factor (2:6×104 in
reference [30]) over simulated annealing and draw a dotted line
(ASAR) to indicate what a more realistic performance roughly
is. Even this is some idealization. The reported performance

10Note that each additional dot to the right takes 10x longer to obtain.

improvement is over a much weaker graph that can be mapped
onto the actual ASA. For G22, a much bigger system is needed
and it will most definitely converge more slowly.

We can see the general trend that a longer annealing time
provides a better answer for all machines. It is also clear
that BRIM is orders of magnitude faster than other systems.
However, rather than thinking about these curves as fixed and
precise, it is helpful to think about them as a general shape
that can move horizontally. Their position only represents the
effect of current design parameters. And it is instructive to
understand what it takes to move them to the left by, say, one
order of magnitude. For ASA and SA, this is equivalent to
making the machine 10x faster. We can imagine the challenge
of this given the difficulty of scaling computation speed, not to
mention memory access time. For the analog implementations,
the question is more subtle. By reducing capacitance and/or
inductance, the curve can shift to the left. The real question
becomes the impact of noise and parasitics both to speed and
solution quality. Such investigation is part of our future work.

TABLE II
SOLUTION QUALITY OF THREE CONFIGURATIONS AND THEIR ANNEALING
TIMES: BRIM (2:2�s); ASA (1ms); AND SA (35min). ALL SOLUTIONS

ARE BEST OF 50 DIFFERENT RUNS SHOWN AS DISTANCE FROM BEST
REPORTED ANSWERS: § [11], ‡ [38], † [39].

Best Ref. BRIM ASA SA
G01 11624 xzy 0 42 0
G02 11620 x 0 38 0
G03 11622 x 0 1 0
G04 11646 xzy 0 23 0
G05 11631 xzy 0 27 0
G06 2178 x 0 2 0
G07 2006 x 0 21 0
G08 2005 x 0 9 0
G09 2054 x 1 1 0
G10 2000 x 1 1 1
G11 564 xzy 6 8 0
G12 556 xzy 4 4 0
G13 582 xzy 4 6 0
G14 3063 x 3 16 1
G15 3050 zy 4 7 0

Best Ref. BRIM ASA SA
G16 3052 xzy 6 27 0
G17 3047 zy 6 24 1
G18 992 zy 4 12 1
G19 906 x 3 7 0
G20 941 xzy 0 0 0
G21 931 x 3 8 0
G43 6660 x 0 26 0
G44 6650 z 0 11 0
G45 6654 z 1 5 0
G46 6649 xz 2 16 0
G47 6657 z 1 18 0
G51 3847 z 3 21 0
G52 3851 z 9 28 1
G53 3850 z 10 20 1
G54 3851 z 8 24 2

While Fig. 10 shows the comparison of one benchmark,
the trend is very similar across all benchmarks. In Table II,
we provide the detail of solution quality for benchmarks of
Gset with no more than 1000 nodes. We compare BRIM, an
ASA with unlimited nodes to map the problem, and SA. For
BRIM, the distances range from 0 to 10, with a mean of 2.6
and a median of 1.5. In contrast, the distance for ASA (1ms)
ranges from 0 to 42 with a mean of 15.1, and a median of 14.
Additionally, the distance for SA (35 Minutes) ranges from 0
to 2 with a mean of 0.3, and a median of 0. SA obtains slightly
better results, but note that it takes 9 orders of magnitudes
longer than BRIM. Increasing annealing time for BRIM may
improve quality but becomes extremely expensive to simulate.

3) Effects of annealing control: As already mentioned
earlier, this paper highlights a different approach to Ising
machine. The specific example used so far is but one design
point in the space and much of the space remains to be
explored in more detail. For example, annealing control plays
a crucial role in obtaining good solutions. Fig. 11 compares
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