Digraph Fourier Transform via Spectral Dispersion Minimization

Gonzalo Mateos

Dept. of Electrical and Computer Engineering
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

Co-authors: Rasoul Shafipour, Ali Khodabakhsh, and Evdokia Nikolova
Acknowledgment: NSF Award CCF-1750428

Calgary, AB, April 20, 2018
Network as graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships

- **Desiderata**: Process, analyze and learn from network data [Kolaczyk’09]

- Interest here not in \mathcal{G} itself, but in data associated with nodes in \mathcal{V}
 - The object of study is a graph signal
 - **Ex**: Opinion profile, buffer levels, neural activity, epidemic
Graph signal processing and Fourier transform

- Directed graph (digraph) G with adjacency matrix A
 \[A_{ij} = \text{Edge weight from node } i \text{ to node } j \]
- Define a signal $x \in \mathbb{R}^N$ on top of the graph
 \[x_i = \text{Signal value at node } i \]
- Associated with G is the underlying undirected G^u
 \[\text{Laplacian matrix } L = D - A^u, \text{ eigenvectors } V = [v_1, \ldots, v_N] \]
- **Graph Signal Processing (GSP):** exploit structure in A or L to process x
- **Graph Fourier Transform (GFT):** $\tilde{x} = V^T x$ for undirected graphs
 \[\Rightarrow \text{Decompose } x \text{ into different modes of variation} \]
 \[\Rightarrow \text{Inverse (i)GFT } x = V\tilde{x}, \text{ eigenvectors as frequency atoms} \]
GFT: Motivation and context

- Spectral analysis and filter design [Tremblay et al’17], [Isufi et al’16]
- Promising tool in neuroscience [Huang et al’16]
 ⇒ Graph frequency analyses of fMRI signals
- Noteworthy GFT approaches
 - Eigenvectors of the Laplacian \(L \) [Shuman et al’13]
 - Jordan decomposition of \(A \) [Sandryhaila-Moura’14], [Deri-Moura’17]
 - Lovász extension of the graph cut size [Sardellitti et al’17]
 - Greedy basis selection for spread modes [Shafipour et al’17]
 - Generalized variation operators and inner products [Girault et al’18]

- **Our contribution:** design a novel digraph (D)GFT such that
 - Bases offer notions of frequency and signal variation
 - Frequencies are (approximately) equidistributed in \([0, f_{\text{max}}]\)
 - Bases are orthonormal, so Parseval’s identity holds
Signal variation on digraphs

- **Total variation** of signal x with respect to L

 \[
 TV(x) = x^T L x = \sum_{i,j=1, j>i}^N A_{ij}^u(x_i - x_j)^2
 \]

 \[\Rightarrow\] Smoothness measure on the graph G^u

- For Laplacian eigenvectors $V = [v_1, \ldots, v_N] \Rightarrow TV(v_k) = \lambda_k$

 \[\Rightarrow 0 = \lambda_1 < \cdots \leq \lambda_N\] can be viewed as frequencies

- **Def:** Directed variation for signals over digraphs ($[x]_+ = \max(0, x)$)

 \[
 DV(x) := \sum_{i,j=1}^N A_{ij}[x_i - x_j]^2_+
 \]

 \[\Rightarrow\] Captures signal variation (flow) along directed edges
 \[\Rightarrow\] Consistent, since $DV(x) \equiv TV(x)$ for undirected graphs
DGFT with spread frequency components

- **Goal:** find N orthonormal bases capturing different modes of DV on G
- Collect the desired bases in a matrix $U = [u_1, \cdots, u_N] \in \mathbb{R}^{N \times N}$

$$\text{DGFT: } \tilde{x} = U^T x$$

$\Rightarrow u_k$ represents the kth frequency mode with $f_k := \text{DV}(u_k)$

- Similar to the DFT, seek N *equidistributed* graph frequencies

$$f_k = \text{DV}(u_k) = \frac{k - 1}{N - 1} f_{\max}, \quad k = 1, \ldots, N$$

$\Rightarrow f_{\max}$ is the maximum DV of a unit-norm graph signal on G

- **Q:** Why spread frequencies?
 - Parsimonious representations of slowly-varying signals
 - Interpretability \Rightarrow better capture low, medium, and high frequencies
 - Aid filter design in the graph spectral domain
Motivation for spread frequencies

Ex: Directed variation minimization [Sardellitti et al’17]

\[
\min_U \sum_{i,j=1}^{N} A_{ij} [u_i - u_j] + \\
\text{s.t. } U^T U = I
\]

- \(U^* \) is the optimum basis where \(a = \frac{1+\sqrt{5}}{4}, b = \frac{1-\sqrt{5}}{4}, \) and \(c = -0.5 \)
- All columns of \(U^* \) satisfy \(DV(u^*_k) = 0, \ k = 1, \ldots, 4 \)
 \(\Rightarrow \) Expansion \(x = U^* \tilde{x} \) fails to capture *different* modes of variation
- **Q:** Can we always find *equidistributed* frequencies in \([0, f_{\text{max}}]\)?
Finding f_{max} is in general challenging

$$u_{\text{max}} = \arg\max_{\|u\|=1} DV(u) \quad \text{and} \quad f_{\text{max}} := DV(u_{\text{max}}).$$

Let v_N be the dominant eigenvector of L

\Rightarrow Can 1/2-approximate f_{max} with $\tilde{u}_{\text{max}} = \arg\max_{v \in \{v_N, -v_N\}} DV(v)$

f_{max} can be obtained analytically for particular graph families
Challenges: Equidistributed frequencies

- **Equidistributed** $f_k = \frac{k-1}{N-1} f_{\text{max}}$ may not be feasible. Ex: In undirected G^u

$$f_u^{\text{max}} = \lambda_{\text{max}} \quad \text{and} \quad \sum_{k=1}^{N} f_k = \sum_{k=1}^{N} \text{TV}(v_k) = \text{trace}(L)$$

- **Idea:** Set $u_1 = u_{\text{min}} := \frac{1}{\sqrt{N}} \mathbf{1}_N$ and $u_N = u_{\text{max}}$ and minimize

$$\delta(U) := \sum_{i=1}^{N-1} [DV(u_{i+1}) - DV(u_i)]^2$$

⇒ $\delta(U)$ is the *spectral dispersion function*

⇒ Minimized when the *free* DV values form an arithmetic sequence
We cast the optimization problem of finding spread frequencies as

$$\min_U \sum_{i=1}^{N-1} [DV(u_{i+1}) - DV(u_i)]^2$$

subject to $U^T U = I$

$u_1 = u_{\text{min}}$

$u_N = u_{\text{max}}$

- Non-convex, orthogonality-constrained minimization of smooth $\delta(U)$
- Feasible since $u_{\text{max}} \perp u_{\text{min}}$

- Adopt a feasible method in the Stiefel manifold to design the DGFT:
 (i) Obtain f_{max} (and u_{max}) by minimizing $-DV(u)$ over $\{u \mid u^T u = 1\}$
 (ii) Find the orthonormal basis U with minimum spectral dispersion
Feasible method in the Stiefel manifold

- Rewrite the problem of finding orthonormal basis as

\[
\min_{\mathbf{U}} \phi(\mathbf{U}) := \delta(\mathbf{U}) + \frac{\lambda}{2} \left(\| \mathbf{u}_1 - \mathbf{u}_{\text{min}} \|^2 + \| \mathbf{u}_N - \mathbf{u}_{\text{max}} \|^2 \right) \\
\text{subject to} \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}
\]

- Let \(\mathbf{U}_k \) be a feasible point at iteration \(k \) and the gradient \(\mathbf{G}_k = \nabla \phi(\mathbf{U}_k) \)
 \(\Rightarrow \) Skew-symmetric matrix \(\mathbf{B}_k := \mathbf{G}_k \mathbf{U}_k^T - \mathbf{U}_k \mathbf{G}_k^T \)

- Follow the update rule \(\mathbf{U}_{k+1}(\tau) = \left(\mathbf{I} + \frac{\tau}{2} \mathbf{B}_k \right)^{-1} \left(\mathbf{I} - \frac{\tau}{2} \mathbf{B}_k \right) \mathbf{U}_k \)
 - Cayley transform preserves orthogonality (i.e., \(\mathbf{U}_{k+1}^T \mathbf{U}_{k+1} = \mathbf{I} \))
 - Is a descent path for a proper step size \(\tau \)

Theorem (Wen-Yin’13) The procedure converges to a stationary point of smooth \(\phi(\mathbf{U}) \), while generating feasible points at every iteration.
Algorithm

1: **Input:** Adjacency matrix A, parameters $\lambda > 0$ and $\epsilon > 0$
2: Find u_{max} by a similar feasible method and set $u_{\text{min}} = \frac{1}{\sqrt{N}} \mathbf{1}_N$
3: Initialize $k = 0$ and orthonormal $U_0 \in \mathbb{R}^{N \times N}$ at random
4: repeat
5: Compute gradient $G_k = \nabla \phi(U_k) \in \mathbb{R}^{N \times N}$
6: Form $B_k = G_k U_k^T - U_k G_k^T$
7: Select τ_k satisfying Armijo-Wolfe conditions
8: Update $U_{k+1}(\tau_k) = (\mathbf{I} + \frac{\tau_k}{2} B_k)^{-1}(\mathbf{I} - \frac{\tau_k}{2} B_k) U_k$
9: $k \leftarrow k + 1$
10: until $\|U_k - U_{k-1}\|_F \leq \epsilon$
11: Return $\hat{U} = U_k$

- Overall run-time is $O(N^3)$ per iteration

Additional details in arXiv:1804.03000 [eess.SP]
Numerical test: Synthetic graph

- Compute U and directed variations using
 - Directed Laplacian eigenvectors [Chung’05]
 - PAMAL method [Sardellitti et al’17]
 - Greedy heuristic [Shafipour et al’17]
 - Spectral dispersion minimization

- Rescale DV values to $[0, 1]$ and calculate spectral dispersion $\delta(U)$
 - 0.256, 0.301, 0.118, and 0.076 respectively
 - Confirms the proposed method yields a better frequency spread
Numerical test: US average temperatures

- Consider the graph of the $N = 48$ contiguous United States
 - Connect two states if they share a border
 - Set arc directions from lower to higher latitudes

- Graph signal $x \rightarrow$ Average annual *temperature* of each state
Numerical test: Denoising US temperatures

- Noisy signal $y = x + n$, with $n \sim \mathcal{N}(0, 10 \times I_N)$
- Define low-pass filter $\tilde{H} = \text{diag}(\tilde{h})$, where $\tilde{h}_i = \mathbb{I}\{i \leq w\}$ (for $w = 3$)
- Recover signal via filtering $\hat{x} = U\tilde{H}\tilde{y} = U\tilde{H}U^T y$
 - Compute recovery error $e_f = \frac{\|\hat{x} - x\|}{\|x\|} \approx 12\%$
 - Reverse the edge orientations and repeat the experiment

- DGFT basis offers a parsimonious (i.e., bandlimited) signal representation
 - Adequate network model improves the denoising performance
Closing remarks

- Measure of directed variation to capture the notion of frequency on G

- Find an orthonormal set of Fourier bases for signals on digraphs
 - Span a maximal frequency range $[0, f_{\text{max}}]$
 - Frequency modes are as evenly distributed as possible

- Two-step DGFT basis design via a feasible method over Stiefel manifold
 i) Find the maximum directed variation f_{max} over the unit sphere
 ii) Minimize a smooth spectral dispersion criterion over $[0, f_{\text{max}}]$
 \Rightarrow Provable convergence guarantees to a stationary point

- Ongoing work and future directions
 - Complexity of finding the maximum frequency f_{max} on a digraph?
 \Rightarrow If NP-hard, what is the best approximation ratio
 - Optimality gap between the local and global optimal dispersions?
Symposium on Graph Signal Processing

Topics of interest

- Graph-signal transforms and filters
- Distributed and non-linear graph SP
- Statistical graph SP
- Prediction and learning for graphs
- Network topology inference
- Recovery of sampled graph signals
- Control of network processes
- Signals in high-order and multiplex graphs
- Neural networks for graph data
- Topological data analysis
- Graph-based image and video processing
- Communications, sensor and power networks
- Neuroscience and other medical fields
- Web, economic and social networks

Paper submission due: June 17, 2018

Organizers:
- Gonzalo Mateos (Univ. of Rochester)
- Santiago Segarra (MIT)
- Sundeep Chepuri (TU Delft)