Abstract

We address the problem of identifying structural brain networks from brain signals measured by resting-state functional magnetic resonance imaging (fMRI). Functional brain activity is modeled as graph signals generated through a linear diffusion process on the unknown structural network. A network deconvolution approach is advocated to: (i) use the fMRI signals to estimate the eigenvectors of the structural network from those of the empirical covariance; and (ii) solve a convex, sparsity-regularized inverse problem to recover the eigenvalues that were discarded by diffusion. The inferred structural networks capture key patterns matching known pathology and may serve as biomarkers for further diagnosis.

Motivation and context

- Understanding brain function is a fundamental scientific challenge
- Network science with graph-centric tools valuable for brain analysis
- Neuroimaging studies are time-consuming and expensive
 - Functional (FC) and structural connectivity (SC)
 - FC and SC differ in resolution, running-time, acquisition
 - Costly to measure FC and SC separately
- Relation between FC & SC worth exploring

Graph signal processing - 101

- Network as graph $G = (\mathcal{V}; \mathcal{A})$: encode pairwise relationships
- Interest here not in \mathcal{V} itself, but in data associated with nodes in \mathcal{V}
 - The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
- Graph SP: need to broaden classical SP results to graph signals
 - Our view: GSP well suited for brain network and signal analysis

Structural brain networks and functional signals

- Structural brain networks represent anatomical brain connections
 - Modeled via a weighted, undirected graph $G = (\mathcal{V}; \mathcal{A})$
 - SC: Sparse and symmetric adjacency matrix $A = \mathcal{W}^T \mathcal{W}$
- Brain signals: quantity level of neuronal activity in brain regions
 - fMRI readings on N brain regions over T timepoints

Numerical tests: simulated signals on known graph structure

- Generate synthetic signals via diffusion model with Gaussian inputs
- Network deconvolution to recover structural network \hat{G}

Numerical tests: simulated signals on known graph structure

- Ground-truth preprocessed structural brain network G_0 (left)
- Generate synthetic signals via diffusion model with Gaussian inputs
- Network deconvolution to recover structural network \hat{G} (right)

Numerical tests: simulated signals on known graph structure

- Edge normalized and thresholded to maintain connected graphs
- Recovery error of 11.1% over 10 Monte Carlo realizations

ADHD data-group-level analysis: Network recovery

- Data: Preprocessed BOLD signals from ADHD-200 dataset
 - 182 healthy subjects and 107 ADHD type-1 patients
 - Signals registered on AAL-116 brain atlas
 - Concatenate brain signals of subjects in each group into $X \in \mathbb{R}^{107 \times 116 \times T}$ for the control group
 - $X \in \mathbb{R}^{182 \times 116 \times T}$ for the patient group
- Network deconvolution: recover SC for control (left), patient (right)

ADHD data-group-level analysis: Network recovery

- Effective and spatially thresholded SCI
- More general diffusion model and sparsity promotion
- Competitive with results of ADHD-200 global competition

Discussion and road ahead

- Network deconvolution framework to identify SC from fMRI signals
- Built upon linear diffusion model between FC and SC
- Group-level and subject-level analysis matches existing results
- Identified brain regions with discriminative power for patient diagnosis
- Envisioned research topics
 - Further validate recovery of SC from observed signals
 - Exploring graph frequency domain for discriminative features
 - Subject-level network inference and disease diagnosis

References

Identifying structural brain networks from functional connectivity: a network deconvolution approach

Yang Li and Gonzalo Mateos

E-mail: yli131@ur.rochester.edu

Dept. of Electrical and Computer Engineering, University of Rochester

http://www.ece.rochester.edu/~yli131/