Network Topology Inference

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

April 6, 2018
Network topology inference

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Network topology inference

- So far dealt with modeling and inference of observed network graphs
 ⇒ Q: If a portion of \(G \) is unobserved, can we infer it from data?

- Discussed construction of representations \(G(V, E) \) for network mapping
 ⇒ Largely informal methodology, lacking an element of validation

- Formulate instead as statistical inference task, i.e. given
 - Measurements \(x_i \) of attributes at some or all vertices \(i \in V \)
 - Indicators \(y_{ij} \) of edge status for some vertex pairs \(\{i, j\} \in V(2) \)
 - A collection \(\mathcal{G} \) of candidate graphs \(G \)

 Goal: infer the topology of the network graph \(G(V, E) \)

- Three canonical network topology inference problems
 (i) Link prediction
 (ii) Association network inference
 (iii) Tomographic network topology inference
Link prediction

- Suppose we observe vertex attributes $\mathbf{x} = [x_1, \ldots, x_{N_v}]^T$; and
- Edge status is only observed for some subset of pairs $V_{\text{obs}}^{(2)} \subset V^{(2)}$

Goal: predict edge status for all other pairs, i.e., $V_{\text{miss}}^{(2)} = V^{(2)} \setminus V_{\text{obs}}^{(2)}$
Suppose we only observe vertex attributes \(x = [x_1, \ldots, x_{N_v}]^\top \); and
Assume \((i, j)\) defined by nontrivial ‘level of association’ among \(x_i, x_j\)

Goal: predict edge status for all vertex pairs \(V^{(2)}\)
Tomographic network topology inference

Suppose we only observe x_i for vertices $i \subset V$ in the ‘perimeter’ of G

Goal: predict edge and vertex status in the ‘interior’ of G
Link prediction

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Link prediction

Let $G(V, E)$ be a random graph, with adjacency matrix $\mathbf{Y} \in \{0, 1\}^{N_v \times N_v}$

\Rightarrow \mathbf{Y}^{obs} and \mathbf{Y}^{miss} denote entries in $V^{(2)}_{\text{obs}}$ and $V^{(2)}_{\text{miss}}$

Link prediction

Predict entries in \mathbf{Y}^{miss}, given observations $\mathbf{Y}^{\text{obs}} = \mathbf{y}^{\text{obs}}$ and possibly various vertex attributes $\mathbf{X} = \mathbf{x} \in \mathbb{R}^{N_v}$

Edge status information may be missing due to:

\Rightarrow Difficulty in observation, issues of sampling
\Rightarrow Edge is not yet present, wish to predict future status

Given a model for \mathbf{X} and $(\mathbf{Y}^{\text{obs}}, \mathbf{Y}^{\text{miss}})$, jointly predict \mathbf{Y}^{miss} based on

$$P(\mathbf{Y}^{\text{miss}} \mid \mathbf{Y}^{\text{obs}} = \mathbf{y}^{\text{obs}}, \mathbf{X} = \mathbf{x})$$

\Rightarrow More manageable to predict the variables Y_{ij}^{miss} individually
Informal scoring methods

- Idea: compute score $s(i, j)$ for missing ‘potential edges’ $\{i, j\} \in V_{\text{miss}}^{(2)}$
 - Predicted edges returned by retaining the top n^* scores

- Scores designed to assess certain local structural properties of G^{obs}
 - Distance-based, inspired by the small-world principle
 $$s(i, j) = -\text{dist}_{G^{\text{obs}}}(i, j)$$
 - Neighborhood-based, e.g., the number of common neighbors
 $$s(i, j) = |N_i^{\text{obs}} \cap N_j^{\text{obs}}| \quad \text{or} \quad s(i, j) = \frac{|N_i^{\text{obs}} \cap N_j^{\text{obs}}|}{|N_i^{\text{obs}} \cup N_j^{\text{obs}}|}$$
 - Favor loosely-connected common neighbors [Adamic-Adar’03]
 $$s(i, j) = \sum_{k \in N_i^{\text{obs}} \cap N_j^{\text{obs}}} \frac{1}{\log |N_k^{\text{obs}}|}$$
Tests on co-authorship networks

- Results from a link prediction study in [Liben Nowell-Kleinberg’03]
Classification methods

- **Idea:** use training data y^{obs} and x to build a binary classifier
 - Classifier is in turn used to predict the entries in Y^{miss}

- **Logistic regression classifiers** most popular, based on the model

$$
\log \left[\frac{P_\beta(Y_{ij} = 1 | Z_{ij} = z)}{P_\beta(Y_{ij} = 0 | Z_{ij} = z)} \right] = \beta^T z, \quad \text{where}
$$

(i) $\beta \in \mathbb{R}^K$ is a vector of regression coefficients; and
(ii) Z_{ij} is a vector of explanatory variables indexed by $\{i, j\}$

$$
Z_{ij} = [g_1(Y^{obs}_{(-ij)}, X), \ldots, g_K(Y^{obs}_{(-ij)}, X)]^T
$$

- Functions $g_k(\cdot)$ encode useful predictive information in $y^{obs}_{(-ij)}$ and x
 - **Ex:** vertex attributes, score functions, network statistics in ERGMs
Logistic regression classifier

- **Train**: Obtain MLE $\hat{\beta}$ via iteratively-reweighted LS

- **Test**: Potential edges (i, j) declared present based on probabilities

$$P_{\hat{\beta}}(Y_{ij} = 1 \mid Z_{ij} = z) = \frac{\exp(\hat{\beta}^T z)}{1 + \exp(\hat{\beta}^T z)}$$

- Logistic regression assumes Y_{ij} conditionally independent given z
 - Seldom the case with relational network data

- Underlying mechanism of data missingness is important
 - Classification for link prediction reminiscent of cross-validation
 - Assumption that data are missing at random is fundamental
Latent variable models

- In addition to a lineal predictor $\beta^\top z$, latent models describe Y_{ij}

 \Rightarrow As a function of vertex-specific latent variables u_i and u_j

- Latent models are flexible to capture underlying social mechanisms

 Ex: homophily (transitivity) and stochastic equivalence (groups)
Latent class and distance models

- **Latent distance model**: node i has unobserved position $U_i \in \mathbb{R}^d$
 - Positions U_i in latent space assumed i.i.d. e.g., Gaussian distributed
 - Model cond. probability of edge Y_{ij} as function of $\beta^T z - \|u_i - u_j\|^2_2$
 - **Homophily**: Nearby nodes in latent space more likely to link

- **Latent class model**: node i belongs to unobserved class $U_i \in \{1, \ldots, k\}$
 - Classes U_i assumed i.i.d. e.g., multinomial distributed
 - Model cond. probability of edge Y_{ij} as function of $\beta^T z - \theta_{u_i,u_j}$
 - **Stochastic equivalence**: Nodes in same class equally likely to link

Logistic regression with latent variables

Let \(M \in \mathbb{R}^{N_v \times N_v} \) be unknown, random, and symmetric of the form

\[
M = U^\top \Lambda U + E,
\]

where

(i) \(U = [u_1, \ldots, u_{N_v}] \) is a random orthonormal matrix of latent variables;
(ii) \(\Lambda \) is a random diagonal matrix; and
(iii) \(E \) is a symmetric matrix of i.i.d. noise entries \(\epsilon_{ij} \)

Latent eigenmodel subsumes the class and distance variants [Hoff’08]

\[
\Rightarrow \text{Notice that } M_{ij} = u_i^\top \Lambda u_j + \epsilon_{ij}
\]

The logistic regression model with latent variables is

\[
\log \left[\frac{P_\beta(Y_{ij} = 1 \mid Z_{ij} = z, M_{ij} = m)}{P_\beta(Y_{ij} = 0 \mid Z_{ij} = z, M_{ij} = m)} \right] = \beta^\top z + m
\]

\(Y_{ij} \) still assumed conditionally independent given \(Z_{ij} \) and \(M_{ij} \)

\(\Rightarrow \text{But they are conditionally dependent given only } Z_{ij} \)
Bayesian link prediction

- Specify distributions for $\mathbf{U}, \Lambda, \mathbf{E}$ to make statistical link predictions
 - Bayesian inference natural \Rightarrow Specify a prior for β as well

- To predict those entries in \mathbf{Y}^{miss}, threshold the posterior mean

$$
\mathbb{E} \left[\frac{\exp \left(\beta^T \mathbf{Z}_{ij} + M_{ij} \right)}{1 + \exp \left(\beta^T \mathbf{Z}_{ij} + M_{ij} \right)} \bigg| \mathbf{Y}^{\text{obs}} = \mathbf{y}^{\text{obs}}, \mathbf{Z}_{ij} = \mathbf{z} \right]
$$

- Use MCMC algorithms to approximate the posterior distribution
 - Gaussian distributions attractive for their conjugacy properties

- Higher complexity than MLE for standard logistic regression
 - \Rightarrow Need to generate draws for N_v^2 unobserved variables $\{U_{ij}\}$
 - \Rightarrow Major cost reduction with reduced rank(\mathbf{U}) = $k \ll N_v$ models
Case study

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Lawyer collaboration network

- Network G^{obs} of working relationships among lawyers [Lazega’01]
 - Nodes are $N_v = 36$ partners, edges indicate partners worked together

- Data includes various node-level attributes:
 - Seniority (node labels indicate rank ordering)
 - Office location (triangle, square or pentagon)
 - Type of practice, i.e., litigation (red) and corporate (cyan)
 - Gender (three partners are female labeled 27, 29 and 34)

- Goal: predict cooperation among social actors in an organization
Methods to predict lawyer collaboration

Define the following set of explanatory variables:

\[Z_{ij}^{(1)} = \text{seniority}_i + \text{seniority}_j, \quad Z_{ij}^{(2)} = \text{practice}_i + \text{practice}_j \]

\[Z_{ij}^{(3)} = \mathbb{I}\{\text{practice}_i = \text{practice}_j\}, \quad Z_{ij}^{(4)} = \mathbb{I}\{\text{gender}_i = \text{gender}_j\} \]

\[Z_{ij}^{(5)} = \mathbb{I}\{\text{office}_i = \text{office}_j\}, \quad Z_{ij}^{(6)} = |\mathcal{N}_i^{obs} \cap \mathcal{N}_j^{obs}| \]

Method 1: standard logistic regression with \(Z_{ij}^{(1)}, \ldots, Z_{ij}^{(5)} \)

Method 2: standard logistic regression with \(Z_{ij}^{(1)}, \ldots, Z_{ij}^{(6)} \)

Method 3 informal scoring method with \(s(i, j) = Z_{ij}^{(6)} \)

Method 4: logistic regression with \(Z_{ij}^{(1)}, \ldots, Z_{ij}^{(5)} \) and latent eigenmodel

Five-fold cross-validation over the set of 36(36 − 1)/2 = 630 vertex pairs

⇒ For each fold, 630/5 = 126 pairs in \(\mathbf{Y}^{miss} \) and the rest in \(\mathbf{Y}^{obs} \)
Receiver operating characteristic curves show predictive performance

- Method 1 performs worst ⇒ Agnostic to network structure
- Informal Method 3 yields slightly worst performance than 2 and 4
Inference of association networks

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Association networks

- **Def:** In association networks, vertices are linked if there is a sufficient level of ‘association’ between attributes of vertex pairs.

Example
- Scientific citation networks
- Movie networks
- Gene-regulatory networks
- Neuro-functional connectivity networks

![Image of microarray expression profiles for E. coli]
Association network inference

- Given a collection of N_v elements represented as vertices $v \in V$
 - Let $x_i \in \mathbb{R}^m$ be a vector of observed vertex attributes, for all $i \in V$
- User-defined similarity $\text{sim}(i, j) = f(x_i, x_j)$ specifies edges $(i, j) \in E$
 - Q: What if sim values themselves (i.e., edge status) not observable?

Association network inference

Infer non-trivial sim values from vertex observations $\{x_1, \ldots, x_{N_v}\}$

- Various choices to be made, hence multiple possible approaches
 - Choice of sim: correlation, partial correlation, mutual information
 - Choice of inference: hypothesis testing, regression, ad hoc
 - Choice of parameters: testing thresholds, tuning regularization
Correlation networks

- Let $X_i \in \mathbb{R}$ be an RV of interest corresponding to $i \in V$

- **Pearson product-moment correlation** as sim between vertex pairs

 \[\text{sim}(i,j) := \rho_{ij} = \frac{\text{cov}[X_i, X_j]}{\sqrt{\text{var}[X_i] \text{var}[X_j]}}, \quad i,j \in V \]

- **Def:** the correlation network graph $G(V, E)$ has edge set

 \[E = \left\{ (i,j) \in V^{(2)} : \rho_{ij} \neq 0 \right\} \]

 - Association network inference \Leftrightarrow Inference of non-zero correlations

- Inference of E typically approached as a testing problem

 \[H_0 : \rho_{ij} = 0 \quad \text{versus} \quad H_1 : \rho_{ij} \neq 0 \]
Let x_{i1}, \ldots, x_{in} be observations of zero-mean X_i, for each $i \in V$

\Rightarrow Common choice of test statistic are empirical correlations

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii} \hat{\sigma}_{jj}}}, \text{ where } \hat{\Sigma} = [\hat{\sigma}_{ij}] = \frac{X^\top X}{n - 1}$$

Convenient alternative statistic is Fisher’s transformation

$$z_{ij} = \frac{1}{2} \log \left(\frac{1 + \hat{\rho}_{ij}}{1 - \hat{\rho}_{ij}} \right), \quad i, j \in V$$

\Rightarrow Under H_0, $z_{ij} \sim N(0, \frac{1}{n-3}) \Rightarrow$ Simple to assess significance

\Rightarrow Reject H_0 at significance level α, i.e., assign edge (i, j) if $|z_{ij}| > \frac{z_{\alpha/2}}{\sqrt{n-3}}$

Error rate control: $P_{H_0} (\text{false edge}) = P_{H_0} \left(|z_{ij}| > \frac{z_{\alpha/2}}{\sqrt{n-3}} \right) = \alpha$
Interested testing challenges emerge with large-scale networks

⇒ Suppose we test all $\binom{N_v}{2}$ vertex pairs, each at level α

⇒ Even if the true G is the empty graph, i.e., $E = \emptyset$

⇒ We expect to declare $\binom{N_v}{2}\alpha$ spurious edges just by chance!

⇒ For a large graph, this number can be considerable

Ex: For G of order $N_v = 100$ and individual tests at level $\alpha = 0.05$

⇒ Expected number of spurious edges is $4950 \times 0.05 \approx 250$

⇒ This predicament known as the multiple testing problem in statistics
Correction for multiple testing

- **Idea:** Control errors at the level of collection of tests, not individually
- **False discovery rate (FDR) control,** i.e., for given level γ ensure

$$
FDR = \mathbb{E} \left[\frac{R_{\text{false}}}{R} \middle| R > 0 \right] \mathbb{P}(R > 0) \leq \gamma
$$

- R is the total number of edges detected; and
- R_{false} is the total number of false edges detected

- **Method of FDR control at level γ [Benjamini-Hochberg’94]**

Step 1: Sort p-values for all $N = \binom{N_v}{2}$ tests, yields $p_{(1)} \leq \ldots \leq p_{(N)}$

Step 2: Reject H_0, i.e., declare all those edges for which

$$
p_{(k)} \leq \left(\frac{k}{N} \right) \gamma
$$
Gene-regulatory interactions

- Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - Creation of biochemical products, i.e., RNA or proteins
- Regulation of a gene refers to the control of its expression
 - Ex: regulation exerted during transcription, copy of DNA to RNA
 - Controlling genes are transcription factors (TFs)
 - Controlled genes are termed targets
 - Regulation type: activation or repression
- Regulatory interactions among genes basic to the workings of organisms
 - Inference of interactions → Finding TF/target gene pairs
- Such relational information summarized in gene-regulatory networks
Microarray data

- Relative levels of gene expression in the cell can be measured
 - Genome-wide scale data obtained using microarray technologies

 For each gene $i \in V$, measure an expression profile $x_i \in \mathbb{R}^n$
 - Vector x_i has gene expression levels under n different conditions
 - Ex: change in pH, heat level, oxygen concentrations

- Microarray data commonly used to infer gene regulatory interactions
Example: gene expression level correlations

- Microarray data for the bacteria Escherichia coli (E. coli)
 - Two TFs \(\text{tyrR}\) and \(\text{lrp}\), potential target \(\text{aroG}\) over \(n = 445\) experiments
 - Ground truth: \(\text{aroG}\) is regulated by \(\text{tyrR}\) but not \(\text{lrp}\)

- Fisher scores: \(z_{\text{aroG}}^{\text{tyrR}} = 0.4599\) and \(z_{\text{aroG}}^{\text{lrp}} = 1.2562\). Both \(p\)-values small
- Based on correlations, \(\text{aroG}\) strongly associated with both \(\text{tyrR}\) and \(\text{lrp}\)
Partial correlations

- Use correlations carefully: ‘correlation does not imply causation’
 - Vertices $i, j \in V$ may have high ρ_{ij} because they influence each other
- But ρ_{ij} could be high if both i, j influenced by a third vertex $k \in V$
 \Rightarrow Correlation networks may declare edges due to latent variables
- Partial correlations better capture direct influence among vertices
 - For $i, j \in V$ consider latent vertices $S_m = \{k_1, \ldots, k_m\} \subset V \setminus \{i, j\}$
- Partial correlation of X_i and X_j, adjusting for $X_{S_m} = [X_{k_1}, \ldots, X_{k_m}]^\top$ is
 \[
 \rho_{ij|S_m} = \frac{\text{cov}[X_i, X_j | X_{S_m}]}{\sqrt{\text{var}[X_i | X_{S_m}] \text{var}[X_j | X_{S_m}]}} , \quad i, j \in V
 \]
- Q: How do we obtain these partial correlations?
Computing partial correlations

Given $\mathbf{X}_{S_m} = [X_{k_1}, \ldots, X_{k_m}]^\top$, the partial correlation of X_i and X_j is

$$ \rho_{ij|S_m} = \frac{\text{cov}[X_i, X_j \mid \mathbf{X}_{S_m}]}{\sqrt{\text{var}[X_i \mid \mathbf{X}_{S_m}] \text{var}[X_j \mid \mathbf{X}_{S_m}]}} = \frac{\sigma_{ij|S_m}}{\sqrt{\sigma_{ii|S_m} \sigma_{jj|S_m} \sigma_{jj|S_m} \sigma_{jj|S_m}}} $$

Here $\sigma_{ii|S_m}, \sigma_{jj|S_m}$ and $\sigma_{ij|S_m}$ are diagonal and off-diagonal elements of

$$ \Sigma_{11|2} := \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \in \mathbb{R}^{2 \times 2} $$

Matrices Σ_{11}, Σ_{22} and $\Sigma_{21} = \Sigma_{12}^\top$ are blocks of the covariance matrix

$$ \text{cov} \left[\begin{array}{c} \mathbf{W}_1 \\ \mathbf{W}_2 \end{array} \right] = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right), \quad \text{where} \quad \mathbf{W}_1 = [X_i, X_j]^\top \quad \text{and} \quad \mathbf{W}_2 = \mathbf{X}_{S_m} $$
Partial correlation networks

- Various ways to use partial correlations to define edges in G

 Ex: X_i, X_j correlated regardless of what m vertices we condition upon

 $$E = \left\{ (i,j) \in V^{(2)} : \rho_{ij|S_m} \neq 0, \text{ for all } S_m \in V^{(m)}_{\{i,j\}} \right\}$$

- Inference of potential edge (i,j) as a testing problem

 $$H_0 : \rho_{ij|S_m} = 0 \text{ for some } S_m \in V^{(m)}_{\{i,j\}}$$
 $$H_1 : \rho_{ij|S_m} \neq 0 \text{ for all } S_m \in V^{(m)}_{\{i,j\}}$$

- Again, given measurements x_{i1}, \ldots, x_{in} for each $i \in V$ need to:
 - Select a test statistic
 - Construct an appropriate null distribution
 - Adjust for multiple testing
Testing partial correlations

- Often consider a collection (over S_m) of smaller testing sub-problems

$$H'_0 : \rho_{ij|S_m} = 0 \text{ versus } H'_1 : \rho_{ij|S_m} \neq 0$$

- **Statistic:** empirical partial correlations $\hat{\rho}_{ij|S_m}$, or Fisher’s z-scores

$$z_{ij|S_m} = \frac{1}{2} \log \left(\frac{1 + \hat{\rho}_{ij|S_m}}{1 - \hat{\rho}_{ij|S_m}} \right)$$

⇒ From asymptotic theory, under H'_0 then $z_{ij|S_m} \sim \mathcal{N}(0, \frac{1}{n-m-3})$

- Multiple tests for each $\{i,j\} \in V^{(2)}$. How do we combine p-values?
 - If $p_{ij|S_m}$ is the p-value for testing H'_0 versus H'_1 for $\{i,j\}$, use

 $$p_{ij}^{\text{max}} = \max \left\{ p_{ij|S_m} : S_m \in V^{(m)}_{\{i,j\}} \right\}$$

- FDR control possible from collection $\{p_{ij}^{\text{max}}\}_{i,j}$ [Wille-Bühlmann’06]
Example: gene expression level partial correlations

- Nontrivial questions about measured TF/target gene pair correlation
 ⇒ TF may be a target gene of another TF’
- Q: Direct influence or result from regulation of TF by other TF’?
- Partial correlation may sort out such confounding among variables
 - Partial correlations $\rho_{aroG,tyrR|lrp}$ and $\rho_{aroG,lrp|tyrR}$ for E. coli data

- Major drop $\rho_{aroG,tyrR|lrp} < \rho_{aroG,tyrR}$, no edge based on p-value 0.92

Fig. 7.4 Scatterplots of microarray measurements, in units of log-relative RNA expression levels, for the gene $aroG$ and the transcription factors $tyrR$ (left column) and lrp (right column). Top row (yellow) shows the data adjusted for lrp (left) and $tyrR$ (right); bottom row (green) shows the data adjusted for all other transcription factors.
Recalculate partial correlations adjusting for all other $m = 152$ TFs

- Moderately strong evidence of association for both pairs
- The sign of the association between $aroG$ and $tyrR$ changed
 - Suggests a repressive role of $tyrR$ in regulating $aroG$
- Choices matter, e.g., the test statistic here. Interpret results carefully
Suppose variables $\{X_i\}_{i \in V}$ have multivariate Gaussian distribution

\Rightarrow Consider $\rho_{ij|V\setminus\{i,j\}}$ conditioning on all other vertices ($m = N_v - 2$)

Theorem

Under the Gaussian assumption, vertices $i, j \in V$ have partial correlation

$$\rho_{ij|V\setminus\{i,j\}} = 0$$

if and only if X_i and X_j are conditionally independent given $\{X_k\}_{k \in V \setminus \{i,j\}}$

Def: the conditional independence graph $G(V, E)$ has edge set

$$E = \left\{ (i, j) \in V^{(2)} : \rho_{ij|V\setminus\{i,j\}} \neq 0 \right\}$$

\Rightarrow A special and popular case of partial correlation networks

Gaussian graphical model (GGM): Gaussian assumption along with G
Let Σ be the covariance matrix of $X = [X_1, \ldots, X_{N_v}]^T$

Def: the concentration matrix is $\Omega = \Sigma^{-1}$ with entries ω_{ij}

Key result: For GGMs, the partial correlations can be expressed as

$$\rho_{ij|V\setminus\{i,j\}} = -\frac{\omega_{ij}}{\sqrt{\omega_{ii}\omega_{jj}}}$$

\Rightarrow Non-zero entries in $\Omega \Leftrightarrow$ Edges in the graph G

Inferring G from data in this context known as covariance selection

\Rightarrow Classical methods are ‘network-agnostic,’ and effectively test

$$H_0 : \rho_{ij|V\setminus\{i,j\}} = 0 \text{ versus } H_1 : \rho_{ij|V\setminus\{i,j\}} \neq 0$$

\Rightarrow Often not scalable, and $n \ll N_v$ so estimation of $\hat{\Sigma}$ challenging

Suppose the random vector $\mathbf{X} = [X_1, \ldots, X_{N_v}]^\top \sim \mathcal{N}(\mathbf{0}, \Sigma)$

Conditional mean of X_i given $\mathbf{X}(-i) = [X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{N_v}]^\top$ is

$$
\mathbb{E} \left[X_i \mid \mathbf{X}(-i) = \mathbf{x}(-i) \right] = \mathbf{\beta}(-i)^\top \mathbf{x}(-i)
$$

Entries of $\mathbf{\beta}(-i)$ expressible in terms of those in $\mathbf{\Omega} = \Sigma^{-1}$, namely

$$
\beta_{(-i),j} = -\frac{\omega_{ij}}{\omega_{ii}}
$$

\Rightarrow Non-zero $\beta_{(-i),j} \iff$ Non-zero ω_{ij} in $\mathbf{\Omega} \iff$ Edge (i,j) in G

Suggests inference of G via least-squares (LS) regression, to estimate

$$
\mathbf{\beta}(-i) = \arg \min_{\mathbf{\theta}} \mathbb{E} \left[(X_i - \mathbf{\theta}^\top \mathbf{X}(-i))^2 \right]
$$

\Rightarrow Looking for zeros in $\mathbf{\beta}(-i)$, so should encourage sparse solutions
Sparsity and the ℓ_1 norm

- Consider minimizing a quadratic function of θ as in LS or ridge
- Q: What is the effect of an ℓ_1-norm constraint, i.e., $\|\theta\|_1 = \sum_i |\theta_i| \leq \tau$?

⇒ Level sets touch constrain set in a kink → Sparse solution

- Lasso estimator enables estimation and variable selection [Tibshirani’94]

$$\hat{\theta}_{\text{Lasso}} = \arg \min_{\theta} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2, \text{ s. to } \|\theta\|_1 \leq \tau$$
Penalized linear regression

- Given data \(\{x_{ik}\}_{k=1}^n \), ordinary LS not satisfactory for inference of \(G \)

\[
\hat{\beta}_{LS}^{(-i)} = \arg \min_{\theta} \sum_{k=1}^{n} (x_{ik} - \theta^\top x_{(-i),k})^2
\]

- If \(n \ll N_v - 1 \), the LS estimation problem is underdetermined
- For finite \(n \), LS yields non-zero estimates a.s. ⇒ Full graph \(G \)

- Overcome these limitations using \(\ell_1 \)-norm penalized LS regression

\[
\hat{\beta}_{PLS}^{(-i)} = \arg \min_{\theta} \sum_{k=1}^{n} (x_{ik} - \theta^\top x_{(-i),k})^2 + \lambda \|\theta\|_1
\]

- Convex problem, tuning \(\lambda \) controls the sparsity level in \(\hat{\beta}_{(-i)}^{PLS} \)
- Theoretical guarantees: consistency [Meinshausen-Bühlmann’06]
- Fast algorithms: graphical Lasso [Friedman et al’07]
Inference of GGMs with edges $E = \{(i, j) \in V^{(2)} : \rho_{ij|V \setminus \{i,j\}} \neq 0\}$

Association network inference:

- Find pairs $\{i, j\}$ for which $\rho_{ij|V \setminus \{i,j\}} \neq 0$.

Covariance selection:

- Find non-zero entries $\omega_{ij} \neq 0$ in the concentration matrix $\Omega = \Sigma^{-1}$.

Variable selection in linear regression:

- Find non-zero regression coefficients $\beta_{(i),j} = -\frac{\omega_{ij}}{\omega_{ii}}$.

- Find $\beta_{(i)} = \arg\min_{\theta} \mathbb{E}[(X_i - \theta^T X_{(-i)})^2]$.
Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Use microarray data and correlation methods to infer TF/target pairs

Dataset: relative log expression RNA levels, for genes in E. coli
 - 4,345 genes measured under 445 different experimental conditions

Ground truth: 153 TFs, and TF/target pairs from database RegulonDB
Methods to infer TF/target gene pairs

- Three correlation based methods to infer TF/target gene pairs
 - Interactions declared if suitable p-values fall below a threshold

 Method 1: Pearson correlation between TF and potential target gene

 Method 2: Partial correlation, controlling for shared effects of one ($m = 1$) other TF, across all 152 other TFs

 Method 3: Full partial correlation, simultaneously controlling for shared effects of all ($m = 152$) other TFs

- In all cases applied Fisher transformation to obtain z-scores
 - Asymptotic Gaussian distributions for p-values, with $n = 445$

- Compared inferred graphs to ground-truth network from RegulonDB
Performance comparisons

- ROC and Precision/Recall curves for Methods 1, 2, and 3
 - Precision: fraction of predicted links that are true
 - Recall: fraction of true links that are correctly predicted

- Method 1 performs worst, but none is stellar
 - Correlation not strong indicator of regulation in this data

- All methods share a region of high precision, but a very small recall
 - Limitations in number/diversity of profiles [Faith et al’07]
Predicting new TF/target gene pairs

- In biology, often interest is in predicting **new interactions**

- 11 interactions found for TF *lrp*, 10 experimentally confirmed (dotted)
 - 5 interacting target genes were new (**magenta, red, cyan**)
 - 4 present in RegulonDB (**magenta, cyan**), but not as *lrp* targets
Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
In imaging, tomography refers to imaging by sections (e.g., MRI)
Reconstruction algorithms relate ‘external data’ to internal structure

Goal: create images of internal aspects of the human body

Tomographic network topology inference

Predict edge and vertex status in the ‘interior’ of G, given only observations x_i for vertices $i \in V$ in the ‘exterior’ of G

Most difficult case of topology inference. *An ill-posed inverse problem*

\Rightarrow **Inverse problem:** invert mapping from ‘internal’ to ‘external’

\Rightarrow **Ill-posed:** the mapping is many-to-one

Most work has dealt with inference of tree topologies

Ex: computer network topologies, phylogenetic tree, media cascades
- Def: an undirected tree \(T = (V_T, E_T) \) is a connected acyclic graph

- Nomenclature:
 - Rooted tree: tree with a single vertex \(r \in V_T \) singled out
 - Leaves: subset of vertices \(L \subset V_T \) of degree one
 - Internal vertices: those vertices in \(V_T \setminus \{\{r\} \cup L\} \)
 - Binary tree: root and internal vertices have at most two children
Tomographic inference of tree topologies

- Given n i.i.d. measurements of RVs $\{X_1, \ldots, X_{N_L}\}$ on N_L vertices

- Consider the family \mathcal{T}_{N_L} of binary trees with N_L labeled leaves

 $$\Rightarrow$$ If we know r then all trees in \mathcal{T}_{N_L} will be rooted at r

Tomographic tree topology inference

Find a tree $\hat{T} \in \mathcal{T}_{N_L}$ that 'best' explains the data $\{x_1, \ldots, x_{N_L}\}$

- Often of interest to infer a set of branch weights as well
Multicast probes: measurements

- **Ex:** Consider inference of computer network topologies, e.g., Internet

- **Multicast packets** sent from a node \((r)\) to multiple destinations \((L)\)
 \[\Rightarrow\] Probes forwarded at routing devices, could be lost en route

- For leaves \(\ell \in L\), consider the indicator \(X_\ell = \mathbb{I}\{\ell \text{ received the probe}\}\)
 \[\Rightarrow\] Send \(n\) multicast probes to yield data \(\{x_\ell \in \{0, 1\}^n\}_{\ell \in L}\)
Multicast probes: structure

- Think of leaf RVs \(\{X_1, \ldots, X_{N_L}\} \) as samples of a process \(\{X_j\}_{j \in V_T} \).

- Useful notation to describe process’ structure
 - **Def:** closest common ancestor \(a(U) \) to a set of leaves \(U \subseteq L \).
 - **Def:** set \(d(j) \) of all immediate descendants of internal vertex \(j \).

- Multicast tree enforces hereditary constraints

 \[\Rightarrow X_{a(U)} = 0 \text{ implies } X_j = 0 \text{ for all } j \in U \]

 \[\Rightarrow \text{If } X_j = 1 \text{ for at least one } j \in d(k), \text{ then } X_k = 1 \]
Hierarchical clustering-based methods

- **Hierarchical clustering** groups N_L objects based on (dis)similarity
 - \Rightarrow Entire hierarchy of nested partitions obtained \rightarrow **dendrogram**

- **Natural tool for tomographic inference of tree topologies**
 - \Rightarrow N_L leaves as ‘objects’, dendrogram as the inferred tree \hat{T}

- **Tailor a (dis)similarity to the tomographic inference problem at hand**
Multicast probes: dissimilarity

- Shared packet loss rate indicative of close leaves in a multicast tree

- Two types of shared loss between a pair of leaves $j, k \in L$
 - **True:** loss of packets in the path common to vertices j and k
 - **False:** losses on paths after the closest common ancestor $a(\{j, k\})$

- Net shared loss rate includes both effects \Rightarrow misleading similarity
 \Rightarrow Can obtain true shared loss rates via simple packet-loss model

Multicast probes: packet-loss model

- Recall the cascade process \(\{X_j\}_{j \in V_T} \) induced by multicast probing.

- Specify a **Markov model** down the tree:
 - **Root** \(r \): set \(X_r = 1 \)
 - **Internal vertex** \(k \): if \(X_k = 0 \), then \(X_j = 0 \) for all \(j \in d(k) \). Otherwise,
 \[
 P(X_j = 1 \mid X_k = 1) = 1 - P(X_j = 0 \mid X_k = 1) = \alpha_j, \; j \in d(k)
 \]
 \Rightarrow Probes successfully transmitted through link \((k, j)\) w.p. \(\alpha_j \)

- Probe successfully transmitted from \(r \) to \(k \) w.p.
 \[
 P(X_k = 1 \mid X_r = 1) := A(k) = \prod_{j \succ k} \alpha_j
 \]
 \Rightarrow \(j \succ k \) denotes ancestral vertices of \(k \) in path from \(r \)

- **True shared loss rate** for two leaf vertices \(j, k \in L \) is \(1 - A(a(\{j, k\})) \)
Estimating shared loss rates

- Let $L(k)$ be the set of leaves that are descendants of k
 - Probability that at least one descendant leaf of k received a packet

$$
\gamma(k) = P \left(\bigcup_{j \in L(k)} \{X_j = 1\} \right)
$$

- Key: Using probabilistic arguments, can establish the relation

$$
1 - \frac{\gamma(k)}{A(k)} = \prod_{j \in d(k)} \left[1 - \frac{\gamma(j)}{A(k)} \right]
$$

⇒ Given values $\{\gamma(k)\}_{k \in V_T}$, can solve for the $\{A(k)\}_{k \in V_T}$

- But $\{\gamma(k)\}_{k \in V_T}$ unknown! Use leaf measurements to form estimates

$$
\hat{\gamma}(k) = \frac{1}{n} \sum_{i=1}^{n} \max_{j \in L(k)} (x_{ji})
$$
Agglomerative hierarchical clustering algorithm

- Greedy, agglomerative algorithm based on shared loss similarities

S1: Estimate packet losses $\hat{\gamma}(j)$ at the leaves $j \in L$

S2: Estimate shared loss $1 - \hat{A}(a(\{j, k\}))$ for all pairs $j, k \in L$

Estimate: $\hat{\gamma}(a(\{j, k\})) = \frac{1}{n} \sum_{i=1}^{n} \max_{s \in \{j, k\}} (x_{si}), \ j, k \in L$

Solve: $1 - \frac{\hat{\gamma}(a(\{j, k\}))}{\hat{A}(a(\{j, k\}))} = \prod_{i \in \{j, k\}} \left[1 - \frac{\hat{\gamma}(i)}{\hat{A}(a(\{j, k\}))} \right]$

S3: Merge pair $\{j^*, k^*\} = \arg \max_{j, k} [1 - \hat{A}(a(\{j, k\}))]$

S4: Exchange $\{j^*, k^*\}$ for $a(\{j^*, k^*\})$ in L and go back to S2

- Can establish theoretical consistency guarantees for recovering T
Likelihood-based methods

- Probability models of leaf RVs \(\{X_\ell\}_{\ell \in L} \) used for defining (dis)similarities
 \(\Rightarrow \) But having such models \(f(x | T) \) also enables ML inference

- If the \(n \) observations \(\{x_i\}_{i=1}^n \) are independent, the likelihood is
 \[
 \mathcal{L}_n(T) = \prod_{i=1}^{n} f(x_i | T)
 \]

- Models often include other parameters \(\theta \) (e.g., the \(\alpha_j \)) beyond \(T \)
 \(\Rightarrow \) In this case \(\mathcal{L}_n(T) \) is an integrated likelihood, namely
 \[
 \mathcal{L}_n(T) = \prod_{i=1}^{n} \int_{\theta \in \Theta} f(x_i | T, \theta) f(\theta | T) d\theta
 \]

- Integrals may be computationally challenging. The ML estimate is
 \[
 \hat{T}_{ML} = \arg \max_{T \in T_{NL}} \mathcal{L}_n(T)
 \]
Case study

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
Sandwich probing

- Consider network tree topology inference via end-to-end probing
 - Packet drops rare (i.e., drop rate < 2%) ⇒ Shared loss rates ineffective

- Alternative measuring time-delay differences: sandwich probes
 - Send small probe to i, then large probe to j, other small probe to i last
 - Measure time-delay difference (TDD) between small packets

- If paths overlap, large probe induces high delay in the second small one
 ⇒ Large TDD values indicative of close leaves in the tree topology
Modeling delay differences

- Sent sandwich probes every 50 ms to random pairs $j, k \in L$
 \implies Total of 9,567 measured delay differences over 8 minutes

- For each pair $j, k \in L$, let x_{jk} be the \textbf{average} TDD
 \implies The Central Limit Theorem suggests $x_{jk} \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$
 \implies Independence of the x_{jk} reasonable by experimental setup
Agglomerative likelihood tree (ALT) algorithm

- Hierarchical clustering with likelihood-based similarity measure

- Let $\ell_{ij}(\mu) = \log f(x_{ij}|\mu)$ be the Gaussian log-likelihood (σ_{ij}^2 known)

- Initialize a set of vertices S with the leaves, i.e., $S = L$

 Def: similarity among leaves is estimated mean TDD

 $$\hat{\mu}_{ij} = \hat{\mu}_{ji} = \arg\max_{\mu} [\ell_{ij}(\mu) + \ell_{ji}(\mu)], \ i, j \in L$$

- Merge $\{i^*, j^*\} = \arg\max_{i,j} \hat{\mu}_{ij}$. Exchange $\{i^*, j^*\}$ for $a(\{i^*, j^*\})$ in S

- Algorithm then iterates until $|S| = 1$, by merging after calculating

 $$\hat{\mu}_{kl} = \hat{\mu}_{lk} = \arg\max_{\mu} \sum_{m \in L(k)} \sum_{p \in L(l)} [\ell_{mp}(\mu) + \ell_{pm}(\mu)], \ k, l \in S$$

 \Rightarrow Recall $L(k)$ is the set of leaves descended by k
Inferred topology

- Ground-truth topology obtained via traceroute probing
 ⇒ traceroute replies often ‘turned-off’ for security
 ⇒ Tomographic topology inference approaches relevant!

- ALT-inferred topology binary by construction ⇒ introduces artifacts

Glossary

- Topology inference
- Link prediction
- Scoring methods
- Logistic regression
- Missing data
- Latent variable models
- Latent eigenmodel
- Association networks
- Correlation networks
- Pearson correlation
- Fisher's transformation
- Multiple testing
- False discovery rate
- Gene-regulatory networks
- Microarray data
- Partial correlation
- Gaussian graphical models
- Concentration matrix
- Variable selection
- Network tomography
- Muticast probing
- Shared packet loss
- Sandwich probing
- Time-delay difference