Network Community Detection

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

March 20, 2018
Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Communities within networks

- Networks play the powerful role of bridging the local and the global
 ⇒ Explain how processes at node/link level ripple to a population

- We often think of (social) networks as having the following structure

- Q: Can we gain insights behind this conceptualization?
In the 60s., M. Granovetter interviewed people who changed jobs
 - Asked about how they discovered their new jobs
 - Many learned about opportunities through personal contacts

Surprisingly, contacts were often acquaintances rather than friends
 ⇒ Close friends likely have the most motivation to help you out

Q: Why do distant acquaintances convey the crucial information?

University of Chicago Press, 1974
Granovetter’s answer and impact

- Linked two different perspectives on distant friendships
 - **Structural:** focus on how friendships span the network
 - **Interpersonal:** local consequences of friendship being strong or weak

- Intertwining between structural and informational role of an edge

1) **Structurally-embedded edges** within a community:
 - Tend to be socially strong; and
 - Are highly redundant in terms of information access

2) **Long-range edges** spanning different parts of the network:
 - Tend to be socially weak; and
 - Offer access to useful information (e.g., on a new job)

- **General way of thinking about the architecture of social networks**
 - Answer transcends the specific setting of job-seeking
A basic principle of network formation is that of **triadic closure**

“If two people have a friend in common, then there is an increased likelihood that they will become friends in the future”

Emergent edges in a social network likely to close triangles

⇒ More likely to see the red edge than the blue one

Prevalence of triadic closure measured by the **clustering coefficient**

\[
cl(v) = \frac{\text{#pairs of friends of } v \text{ that are connected}}{\text{#pairs of friends of } v} = \frac{\text{# } \triangle \text{ involving } v}{d_v(d_v - 1)/2}
\]

![Graphs showing clustering coefficients](image)
Triadic closure is intuitively very natural. Reasons why it operates:

1) Increased **opportunity** for B and C to meet
 ⇒ Both spend time with A

2) There is a basis for mutual **trust** among B and C
 ⇒ Both have A as a common friend

3) A may have an **incentive** to bring B and C together
 ⇒ Lack of friendship may become a source of latent stress

Premise based on theories dating to early work in social psychology

Bridges

- **Ex:** Consider the simple social network in the figure

```
A B
C D
E
```

- A’s links to C, D, and E connect her to a tightly knit group
 - ⇒ A, C, D, and E likely exposed to similar opinions

- A’s link to B seems to reach to a different part of the network
 - ⇒ Offers her access to views she would otherwise not hear about

- A-B edge is called a **bridge**, its removal disconnects the network
 - ⇒ Giant components suggest that bridges are quite rare
Ex: In reality, the social network is larger and may look as

⇒ Without A, B knowing, may have a longer path among them

Def: Span of \((u, v)\) is the \(u - v\) distance when the edge is removed

Def: A local bridge is an edge with span \(> 2\)

⇒ Ex: Edge A-B is a local bridge with span 3

Local bridges with large spans \(\approx\) bridges, but less extreme

⇒ Link with triadic closure: local bridges not part of triangles
Strong triadic closure property

- Categorize all edges in the network according to their strength
 - Strong ties corresponding to friendship
 - Weak ties corresponding to acquaintances

- Opportunity, trust, incentive act more powerfully for strong ties
 - Suggests qualitative assumption termed strong triadic closure

 "Two strong ties implies a third edge exists closing the triangle"

- Abstraction to reason about consequences of strong/weak ties
Local bridges and weak ties

- a) Local, interpersonal distinction between edges \Rightarrow strong/weak ties
- b) Global, structural notion \Rightarrow local bridges present or absent

Theorem

If a node satisfies the strong triadic closure property and is involved in at least two strong ties, then any local bridge incident to it is a weak tie.

- Links **structural** and **interpersonal** perspectives on friendships

 ![Diagram of a network with nodes and edges labeled 'S' for strong and 'W' for weak, illustrating the theorem.]

- Back to job-seeking, local bridges connect to new information

 \Rightarrow Conceptual span is related to their weakness as social ties

 \Rightarrow Surprising dual role suggests a *“strength of weak ties”*
Proof by contradiction

Proof.

- We will argue by contradiction. Suppose node A has 2 strong ties
- Moreover, suppose A satisfies the strong triadic closure property

- Let $A-B$ be a local bridge as well as a strong tie

\Rightarrow Edge $B-C$ must exist by strong triadic closure
- This contradicts $A-B$ is a local bridge (cannot be part of a triangle)
Q: Can one test Granovetter’s theory with real network data?
⇒ Hard for decades. Lack of large-scale social interaction surveys

Now we have “who-calls-whom” networks with both key ingredients
⇒ Network structure of communication among pairs of people
⇒ Total talking time, i.e., a proxy for tie strength

Ex: Cell-phone network spanning ≈ 20% of country’s population

Generalizing weak ties and local bridges

- Model described so far imposes sharp dichotomies on the network
 ⇒ Edges are either strong or weak, local bridges or not
 ⇒ Convenient to have proxies exhibiting smoother gradations

- Numerical tie strength ⇒ Minutes spent in phone conversations
 ⇒ Order edges by strength, report their percentile occupancy

- Generalize local bridges ⇒ Define neighborhood overlap of edge \((i, j)\)

\[
O_{ij} = \frac{|n(i) \cap n(j)|}{|n(i) \cup n(j)|}; \quad n(i) := \{j \in V : (i, j) \in E\}
\]

- Desirable property: \(O_{ij} = 0\) if \((i, j)\) is a local bridge
Empirical results

- **Strength of weak ties prediction**: O_{ij} grows with tie strength
 - Dependence borne out very cleanly by the data (○ points)

- Randomly permuted tie strengths, fixed network structure (□ points)
 - Effectively removes the coupling between O_{ij} and tie strength
Phone network and tie strengths

- Cell-phone network with color-coded tie strengths

1) Stronger ties more structurally-embedded (within communities)
2) Weaker ties correlate with long-range edges joining communities
Randomly permuted tie strengths

- Same cell-phone network with randomly permuted tie strengths

- No apparent link between structural and interpersonal roles of edges
Weak ties linking communities

- **Strength of weak ties prediction:** long-range, weak ties bridge communities

- **Delete decreasingly weaker** (small overlap) edges one at a time
 - ⇒ Giant component shrinks rapidly, eventually disappears

- **Repeat with strong-to-weak tie deletions** ⇒ slower shrinkage observed
Closing the loop

- We often think of (social) networks as having the following structure:

 - Long-range, weak ties
 - Embedded, strong ties

- Conceptual picture supported by Granovetter’s strength of weak ties
Network communities

- Community structure in networks
- Examples of network communities
- Network community detection
- Modularity maximization
- Spectral graph partitioning
Communities

> Nodes in real-world networks organize into communities
> **Ex:** families, clubs, political organizations, proteins by function, . . .

> Supported by Granovetter’s **strength of weak ties** theory

> Community (a.k.a. group, cluster, module) members are:

 ⇒ Well connected among themselves
 ⇒ Relatively well separated from the rest

> Exhibit high cohesiveness w.r.t. the underlying relational patterns
Social interactions among members of a karate club in the 70s

Zachary witnessed the club split in two during his study

⇒ Toy network, yet canonical for community detection algorithms
⇒ Offers “ground truth” community membership (a rare luxury)
Political blogs

- The political blogosphere for the US 2004 presidential election

- Community structure of liberal and conservative blogs is apparent

 \[\Rightarrow\] People have a stronger tendency to interact with “equals”
Electrical power grid

- Split power network into areas with minimum inter-area interactions

Applications:

- Decide control areas for distributed power system state estimation
- Parallel computation of power flow
- Controlled islanding to prevent spreading of blackouts
High-school students

- Network of social interactions among high-school students

- Strong assortative mixing, with race as latent characteristic
Physicists working on Network Science

- Coauthorship network of physicists publishing networks’ research

- Tightly-knit subgroups are evident from the network structure
College football

- Vertices are NCAA football teams, edges are games during Fall’00

- Communities are the NCAA conferences and independent teams
Facebook friendships

- Facebook egonet with 744 vertices and 30K edges

- Asked “ego” to identify social circles to which friends belong
 ⇒ Company, high-school, basketball club, squash club, family
Network community detection

Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Unveiling network communities

- Nodes in real-world networks organize into communities
 Ex: families, clubs, political organizations, proteins by function, . . .

- Community (a.k.a. group, cluster, module) members are:
 - Well connected among themselves
 - Relatively well separated from the rest

- Exhibit high cohesiveness w.r.t. the underlying relational patterns

- Q: How can we automatically identify such cohesive subgroups?
Community detection and graph partitioning

- **Community detection** is a challenging clustering problem
 - C1) No consensus on the structural definition of community
 - C2) Node subset selection often intractable
 - C3) Lack of ground-truth for validation

- Useful for exploratory analysis of network data
 - Ex: clues about social interactions, content-related web pages

Graph partitioning

| Split V into given number of non-overlapping groups of given sizes |

- **Criterion:** number of edges between groups is minimized (more soon)
 - Ex: task-processor assignment for load balancing

- Number and sizes of groups unspecified in community detection
 - ⇒ Identify the natural fault lines along which a network separates
Graph partitioning is hard

- **Ex:** Graph bisection problem, i.e., partition V into two groups
 - Suppose the groups V_1 and V_2 are non-overlapping
 - Suppose groups have equal size, i.e., $|V_1| = |V_2| = N_v/2$
 - Minimize edges running between vertices in different groups

- Simple problem to describe, but hard to solve

\[
\text{Number of ways to partition } V : \binom{N_v}{N_v/2} \approx \frac{2^{N_v}}{\sqrt{N_v}}
\]

⇒ Used Stirling’s formula $N_v! \approx \sqrt{2\pi N_v} (N_v/e)^{N_v}$

⇒ Exhaustive search intractable beyond toy small-sized networks

- No smart (i.e., polynomial time) algorithm, NP-hard problem
 ⇒ Seek good heuristics, e.g., relaxations of natural criteria
Strength of weak ties motivation

- Local bridges connect weakly interacting parts of the network

Q: What about removing those to reveal communities?

Challenges
- Multiple local bridges. Some better than others? Which one first?
- There might be no local bridge, yet an apparent natural division
Edge betweenness centrality

- **Idea:** high edge betweenness centrality to identify weak ties
 - High $c_{Be}(e)$ edges carry large traffic volume over shortest paths
 - Position at the interface between tightly-knit groups

- **Ex:** cell-phone network with colored edge strength and betweenness

![Edge strength](Image1)

![Edge betweenness](Image2)
Girvan-Newman’s method

- **Girvan-Newmann’s method** extremely simple conceptually
 - Find and remove “spanning links” between cohesive subgroups

- **Algorithm:** Repeat until there are no edges left
 - Calculate the betweenness centrality $c_{Be}(e)$ of all edges
 - Remove edge(s) with highest $c_{Be}(e)$

- Connected components are the communities identified
 - **Divisive method:** network falls apart into pieces as we go
 - **Nested partition:** larger communities potentially host denser groups
 - Recompute edge betweenness in $O(N_v N_e)$-time per step

Example: The algorithm in action

Original graph

Step 1

Step 2

Step 3

Nested graph decomposition
Scientific collaboration network

- **Ex:** Coauthorship network of scientists at the Santa Fe Institute

- Communities found can be traced to different disciplines
Hierarchical clustering

▶ Greedy approach to iteratively modify successive candidate partitions
 ▶ **Agglomerative**: successive coarsening of partitions through merging
 ▶ **Divisive**: successive refinement of partitions through splitting

▶ Per step, partitions are modified in a way that minimizes a cost
 ▶ Measures of (dis)similarity \(x_{ij} \) between pairs of vertices \(v_i \) and \(v_j \)
 ▶ Ex: Euclidean distance dissimilarity

\[
x_{ij} = \sqrt{\sum_{k \neq i,j} (A_{ik} - A_{jk})^2}
\]

▶ Method returns an entire hierarchy of nested partitions of the graph
 ⇒ Can range fully from \(\{\{v_1\}, \ldots, \{v_{N_v}\}\} \) to \(V \)
Agglomerative clustering

- An agglomerative hierarchical clustering algorithm proceeds as follows

 S1: Choose a dissimilarity metric and compute it for all vertex pairs
 S2: Assign each vertex to a group of its own
 S3: Merge the pair of groups with smallest dissimilarity
 S4: Compute the dissimilarity between the new group and all others
 S5: Repeat from S3 until all vertices belong to a single group

- Need to define **group dissimilarity** from pairwise vertex counterparts

 - **Single linkage:** group dissimilarity $x^{SL}_{G_i,G_j}$ follows single most dissimilar pair

 \[
 x^{SL}_{G_i,G_j} = \max_{u \in G_i, v \in G_j} x_{uv}
 \]

 - **Complete linkage:** every vertex pair highly dissimilar to have high $x^{CL}_{G_i,G_j}$

 \[
 x^{CL}_{G_i,G_j} = \min_{u \in G_i, v \in G_j} x_{uv}
 \]
Hierarchical partitions often represented with a dendrogram

Shows groups found in the network at all algorithmic steps
 \Rightarrow Split the network at different resolutions

Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

Q: Which of the divisions is the most useful/optimal in some sense?
A: Need to define metrics of graph clustering quality
Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Modularity

- Size of communities typically unknown ⇒ Identify automatically
- **Modularity** measures how well a network is partitioned in communities
 - **Intuition**: density of edges in communities higher than expected
- Consider a graph G and a partition into groups $s \in S$. **Modularity**:
 \[
 Q(G, S) \propto \sum_{s \in S} [(\# \text{ of edges within group } s) - \mathbb{E} [\# \text{ of such edges}]]
 \]
- Formally, after normalization such that $Q(G, S) \in [-1, 1]$
 \[
 Q(G, S) = \frac{1}{2N_e} \sum_{s \in S} \sum_{i,j \in s} \left[A_{ij} - \frac{d_i d_j}{2N_e} \right]
 \]
 ⇒ **Null model**: randomize edges, preserving degree distribution
Expected connectivity among nodes

- **Null model:** randomize edges preserving degree distribution in G
 \Rightarrow Random variable $A_{ij} := \mathbb{I}\{(i,j) \in E\}$
 \Rightarrow Expectation is $\mathbb{E}[A_{ij}] = P((i,j) \in E)$

- Suppose node i has degree d_i, node j has degree d_j
 \Rightarrow Degree is “# of spokes” per node, $2N_e$ spokes in G

![Diagram of nodes and spokes]

- Probability spoke i_k connected to j is $\frac{d_j}{2N_e - 1} \approx \frac{d_j}{2N_e}$, hence

$$P((i,j) \in E) = P\left(\bigcup_{i_k=1}^{d_i} \{\text{spoke } i_k \text{ connected to } j\} \right)$$

$$= \sum_{i_k=1}^{d_i} P(\text{spoke } i_k \text{ connected to } j) = \frac{d_id_j}{2N_e}$$
Assessing clustering quality

- Can evaluate the modularity of each partition in a dendrogram
 ⇒ Maximum value gives the “best” community structure

- **Ex:** Girvan-Newman’s algorithm for the Zachary's karate club

- **Q:** Why not optimize $Q(G, S)$ directly over possible partitions S?
Recall our definition of modularity

\[Q(G, S) = \frac{1}{2N_e} \sum_{s \in S} \sum_{i,j \in s} \left(A_{ij} - \frac{d_i d_j}{2N_e} \right) \]

Let \(g_i \) be the group membership of vertex \(i \), and rewrite

\[Q(G, S) = \frac{1}{2N_e} \sum_{i,j \in V} \left(A_{ij} - \frac{d_i d_j}{2N_e} \right) \mathbb{1}\{g_i = g_j\} \]

Define for convenience the summands \(B_{ij} := A_{ij} - \frac{d_i d_j}{2N_e} \)

\[\Rightarrow \text{ Both marginal sums of } B_{ij} \text{ vanish, since e.g.,} \]

\[\sum_j B_{ij} = \sum_j A_{ij} - \frac{d_i}{2N_e} \sum_j d_j = d_i - \frac{d_i}{2N_e} 2N_e = 0 \]
Graph bisection

- Consider (for simplicity) dividing the network in two groups

- Binary **community membership variables** per vertex

 \[s_i = \begin{cases}
 +1, & \text{vertex } i \text{ belongs to group 1} \\
 -1, & \text{vertex } i \text{ belongs to group 2}
\end{cases} \]

- Using the identity \(\frac{1}{2}(s_is_j + 1) = \mathbb{I}\{g_i = g_j\} \), the modularity is

 \[
 Q(G, S) = \frac{1}{2N_e} \sum_{i,j \in V} \left[A_{ij} - \frac{d_id_j}{2N_e} \right] \mathbb{I}\{g_i = g_j\} = \frac{1}{4N_e} \sum_{i,j \in V} B_{ij}(s_is_j + 1)
 \]

- Recall \(\sum_j B_{ij} = 0 \) to obtain the simpler expression

 \[
 Q(G, S) = \frac{1}{4N_e} \sum_{i,j \in V} B_{ij} s_is_j
 \]
Let $B \in \mathbb{R}^{N_v \times N_v}$ be the modularity matrix with entries $B_{ij} := A_{ij} - \frac{d_i d_j}{2N_e}$.

Any partition S is defined by the vector $s = [s_1, \ldots, s_{N_v}]^T$.

Modularity is a quadratic form

$$Q(G, S) = \frac{1}{4N_e} \sum_{i,j \in V} B_{ij} s_i s_j = \frac{1}{4N_e} s^T Bs$$

Modularity as criterion for graph bisection yields the formulation

$$\hat{s} = \arg \max_{s \in \{\pm 1\}^{N_v}} s^T Bs$$

Nasty binary constraints $s \in \{\pm 1\}^{N_v}$ (hypercube vertices)

Modularity optimization is NP-hard [Brandes et al '06]
Just relax!

- Relax the constraint \(s \in \{ \pm 1 \}^{N_v} \) to \(s \in \mathbb{R}^{N_v} \), \(||s||_2 = 1 \)

\[
\hat{s} = \arg \max_s s^\top Bs, \quad \text{s. to} \quad s^\top s = 1
\]

- Associate a Langrange multiplier \(\lambda \) to the constraint \(s^\top s = 1 \)

 \[\Rightarrow \text{Optimality conditions yields} \]

\[
\nabla_s \left[s^\top Bs + \lambda (1 - s^\top s) \right] = 0 \Rightarrow Bs = \lambda s
\]

- Conclusion is that \(s \) is an eigenvector of \(B \) with eigenvalue \(\lambda \)

- **Q: Which eigenvector should we pick?**

 \[\Rightarrow \text{At optimum} \ Bs = \lambda s \text{ so objective becomes} \]

\[
s^\top Bs = \lambda s^\top s = \lambda
\]

- **A: To maximize modularity pick the dominant eigenvector of \(B \)**
Spectral modularity maximization

- Let \mathbf{u}_1 be the dominant eigenvector of \mathbf{B}, with i-th entry $[\mathbf{u}_1]_i$
 - Cannot just set $\mathbf{s} = \mathbf{u}_1$ because $\mathbf{u}_1 \neq \{\pm 1\}^N$
 - Best effort: maximize their similarity $\mathbf{s}^\top \mathbf{u}_1$ which gives

 $$s_i = \text{sign}([\mathbf{u}_1]_i) := \begin{cases}
 +1, & [\mathbf{u}_1]_i > 0 \\
 -1, & [\mathbf{u}_1]_i \leq 0
 \end{cases}$$

Spectral modularity maximization algorithm

- **S1**: Compute modularity matrix \mathbf{B} with entries $B_{ij} = A_{ij} - \frac{d_i d_j}{2N_e}$
- **S2**: Find dominant eigenvector \mathbf{u}_1 of \mathbf{B} (e.g., power method)
- **S3**: Cluster membership of vertex i is $s_i = \text{sign}([\mathbf{u}_1]_i)$

- Multiple (> 2) communities through e.g., repeated graph bisection
Example: Zachary’s karate club

- **Spectral modularity maximization**
 - Shapes of vertices indicate community membership
 - Dotted line indicates partition found by the algorithm
 - Vertex colors indicate the strength of their membership
Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Consider an undirected graph $G(V, E)$

Ex: Graph bisection problem, i.e., partition V into two groups
- Groups V_1 and $V_2 = V_1^C$ are non-overlapping
- Groups have given size, i.e., $|V_1| = N_1$ and $|V_2| = N_2$

Q: What is a good criterion to partition the graph?
A: We have already seen modularity. Let’s see a different one
Graph cut

- **Desiderata:** Community members should be
 - Well connected among themselves; and
 - Relatively well separated from the rest of the nodes

- **Def:** A cut C is the number of edges between groups V_1 and $V \setminus V_1$

$$C := \text{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} A_{ij}$$

- **Natural criterion:** minimize cut, i.e., edges across groups V_1 and V_2
From graph cuts . . .

- **Binary community membership variables** per vertex

\[
s_i = \begin{cases}
 +1, & \text{vertex } i \text{ belongs to } V_1 \\
 -1, & \text{vertex } i \text{ belongs to } V_2
\end{cases}
\]

- Let \(g_i \) be the group membership of vertex \(i \), such that

\[
\mathbb{I}\{g_i \neq g_j\} = \frac{1}{2}(1 - s_i s_j) = \begin{cases}
 1, & i \text{ and } j \text{ in different groups} \\
 0, & i \text{ and } j \text{ in the same group}
\end{cases}
\]

- Cut expressible in terms of the variables \(s_i \) as

\[
C = \sum_{i \in V_1, j \in V_2} A_{ij} = \frac{1}{2} \sum_{i, j \in V} A_{ij}(1 - s_i s_j)
\]
First summand in $C = \frac{1}{2} \sum_{i,j} A_{ij}(1 - s_i s_j)$ is

$$\sum_{i,j \in V} A_{ij} = \sum_{i \in V} d_i = \sum_{i \in V} d_i s_i^2 = \sum_{i,j \in V} d_i s_i s_j \mathbb{1} \{i = j\}$$

- Used $s_i^2 = 1$ since $s_i \in \{\pm 1\}$. The cut becomes

$$C = \frac{1}{2} \sum_{i,j \in V} (d_i \mathbb{1} \{i = j\} - A_{ij}) s_i s_j = \frac{1}{2} \sum_{i,j \in V} L_{ij} s_i s_j$$

- Cut in terms of L_{ij}, entries of the graph Laplacian $L = D - A$, i.e.,

$$C(s) = \frac{1}{2} s^\top L s, \quad s := [s_1, \ldots, s_N]^\top$$

- Maximize modularity $Q(s) \propto s^\top B s$ vs. Minimize cut $C(s) \propto s^\top L s$
Graph cut minimization

- Since $|V_1| = N_1$ and $|V_2| = N_2 = N - N_1$, we have the constraint

$$\sum_{i \in V} s_i = \sum_{i \in V_1} (+1) + \sum_{i \in V_2} (-1) = N_1 - N_2 \Rightarrow \mathbf{1}^T \mathbf{s} = N_1 - N_2$$

- Minimum-cut criterion for graph bisection yields the formulation

$$\hat{s} = \arg\min_{\mathbf{s} \in \{\pm 1\}^N} \mathbf{s}^T \mathbf{Ls}, \quad \text{s. to } \mathbf{1}^T \mathbf{s} = N_1 - N_2$$

- Again, binary constraints $\mathbf{s} \in \{\pm 1\}^N$ render cut minimization hard

 \Rightarrow Relax binary constraints as with modularity maximization
Laplacian matrix properties revisited

- **Smoothness:** For any vector \(x \in \mathbb{R}^{N_v} \) of “vertex values”, one has

\[
x^\top L x = \sum_{i,j \in V} L_{ij} x_i x_j = \sum_{(i,j) \in E} (x_i - x_j)^2
\]

which can be minimized to enforce smoothness of functions on \(G \)

- **Positive semi-definiteness:** Follows since \(x^\top L x \geq 0 \) for all \(x \in \mathbb{R}^{N_v} \)

- **Spectrum:** All eigenvalues of \(L \) are real and non-negative
 \[\Rightarrow\] Eigenvectors form an orthonormal basis of \(\mathbb{R}^{N_v} \)

- **Rank deficiency:** Since \(L1 = 0 \), \(L \) is rank deficient

- **Spectrum and connectivity:** The smallest eigenvalue \(\lambda_1 \) of \(L \) is 0
 - If the second-smallest eigenvalue \(\lambda_2 \neq 0 \), then \(G \) is connected
 - If \(L \) has \(n \) zero eigenvalues, \(G \) has \(n \) connected components
Further intuition

- Since $s^T L s = \sum_{(i,j) \in E} (s_i - s_j)^2$, the minimum-cut formulation is

$$\hat{s} = \arg \min_{s \in \{\pm 1\}^{N_v}} \sum_{(i,j) \in E} (s_i - s_j)^2, \quad \text{s. to } 1^T s = N_1 - N_2$$

- **Q:** Does this equivalent cost function make sense? **A:** Absolutely!
 - Edges joining vertices in the same group do not add to the sum
 - Edges joining vertices in different groups add 4 to the sum

- **Minimize cut:** assign values s_i to nodes i such that few edges cross 0
Minimum-cut relaxation

- Relax the constraint $s \in \{\pm 1\}^{N_v}$ to $s \in \mathbb{R}^{N_v}$, $\|s\|_2 = 1$

 \[\hat{s} = \arg \min_s s^\top L s, \quad \text{s. to} \quad 1^\top s = N_1 - N_2 \quad \text{and} \quad s^\top s = 1 \]

 ⇒ Straightforward to solve using Lagrange multipliers

- Characterization of the solution \hat{s} [Fiedler '73]:

 \[\hat{s} = v_2 + \frac{N_1 - N_2}{N_v} 1 \]

 ⇒ The ‘second-smallest’ eigenvector v_2 of L satisfies $1^\top v_2 = 0$

 ⇒ Minimum cut is $C(\hat{s}) = \hat{s}^\top L \hat{s} = v_2^\top L v_2 \propto \lambda_2$

- If the graph G is disconnected then we know $\lambda_2 = 0 = C(\hat{s})$

 ⇒ If G is amenable to bisection, the cut is small and so is λ_2
Theoretical guarantee

- Consider a partition of G into V_1 and V_2, where $|V_1| \leq |V_2|$

- If G is connected, then the Cheeger inequality asserts

$$\frac{\alpha^2}{2d_{max}} \leq \lambda_2 \leq 2\alpha$$

where $\alpha = \frac{C}{|V_1|}$ and d_{max} is the maximum node degree

⇒ Certifies that λ_2 gives a useful bound

Q: How to obtain the binary cluster labels \(s \in \{ \pm 1 \}^{N_v} \) from \(\hat{s} \in \mathbb{R}^{N_v} \)?

\[s_i = f(v_2) := \begin{cases} +1, & [v_2]_i \text{ among the } N_1 \text{ largest entries of } v_2 \\ -1, & \text{otherwise} \end{cases} \]

Spectral graph bisection algorithm

1. **S1:** Compute Laplacian matrix \(L \) with entries \(L_{ij} = D_{ij} - A_{ij} \)
2. **S2:** Find ‘second smallest’ eigenvector \(v_2 \) of \(L \)
3. **S3:** Candidate membership of vertex \(i \) is \(\bar{s}_i = f([v_2]) \) (or \(s_i = f([-v_2]) \))
4. **S4:** Among \(\bar{s} \) and \(s \) pick the one that minimizes \(C(s) \)

Complexity: efficient Lanczos algorithm variant in \(O\left(\frac{N_e}{\lambda_3 - \lambda_2}\right) \) time

Nomenclature: \(v_2 \) is known as the Fiedler vector

\[\Rightarrow \text{Eigenvalue } \lambda_2 \text{ is Fiedler value, or algebraic connectivity of } G \]
Spectral gap in Fiedler vector entries

- Suppose G is disconnected and has two connected components
 - L is block diagonal, two smallest eigenvectors indicate groups, i.e.,
 \[v_1 = [1, 1, \ldots, 1, 0, \ldots, 0]^T \text{ and } v_2 = [0, 0, \ldots, 0, 1, \ldots, 1]^T \]

- If G is connected but amenable to bisection, $v_1 = 1$ and $\lambda_2 \approx 0$
 - Also, $1^T v_2 = \sum_i [v_2]_i = 0 \Rightarrow$ Positive and negative entries in v_2
Consider the graph bisection problem with unknown group sizes

⇒ Minimizing the graph cut may be no longer meaningful!

⇒ Cost \(C := \sum_{i \in V_1, j \in V_2} A_{ij} \) agnostic to groups’ internal structure

⇒ Better criterion is the ratio cut \(R \) defined as

\[
R := \frac{C}{|V_1|} + \frac{C}{|V_2|}
\]

⇒ Balanced partitions: small community is penalized by the cost
Ratio-cut minimization

- Fix a bisection S of G into groups V_1 and V_2
- Define $f : f(S) = [f_1, \ldots, f_{N_v}]^\top \in \mathbb{R}^{N_v}$ with entries
 \[
 f_i = \begin{cases}
 \sqrt{\frac{|V_2|}{|V_1|}}, & \text{vertex } i \text{ belongs to } V_1 \\
 -\sqrt{\frac{|V_1|}{|V_2|}}, & \text{vertex } i \text{ belongs to } V_2
 \end{cases}
 \]

- One can establish the following properties:
 - **P1**: $f^\top Lf = N_v R(S)$;
 - **P2**: $\sum_i f_i = 0$, i.e., $1^\top f = 0$; and
 - **P3**: $\|f\|^2 = N_v$

- From **P1-P3** it follows that ratio-cut minimization is equivalent to
 \[
 \min_f f^\top Lf, \quad \text{s. to } 1^\top f = 0 \text{ and } f^\top f = N_v
 \]
Ratio cut and spectral graph bisection

- Ratio-cut minimization is also NP-hard. Relax to obtain

\[
\hat{s} = \arg \min_{s \in \mathbb{R}^{N_v}} s^\top L s, \quad \text{s. to } 1^\top s = 0 \text{ and } s^\top s = N_v
\]

- Partition \(\hat{S} \) also given by the spectral graph bisection algorithm

S1: Compute Laplacian matrix \(L \) with entries \(L_{ij} = D_{ij} - A_{ij} \)

S2: Find ‘second smallest’ eigenvector \(v_2 \) of \(L \)

S3: Cluster membership of vertex \(i \) is \(s_i = \text{sign}(\lfloor v_2 \rfloor_i) \)

- Alternative criterion is the normalized cut \(NC \) defined as

\[
NC = \frac{C}{\text{vol}(V_1)} + \frac{C}{\text{vol}(V_2)}, \quad \text{vol}(V_i) := \sum_{v \in V_i} d_v, \ i = 1, 2
\]

\(\Rightarrow \) Corresponds to using the normalized Laplacian \(D^{-1}L \)
Glossary

- Network community
- (Strong) triadic closure
- Clustering coefficient
- Bridges and local bridges
- Tie strength
- Neighborhood overlap
- Strength of weak ties
- Zachary’s karate club
- Community detection
- Graph partitioning and bisection
- Non-overlapping communities
- Edge betweenness centrality
- Girvan-Newmann method
- Hierarchical clustering
- Dendrogram
- Single and complete linkage
- Modularity
- Spectral modularity maximization
- Modularity and Laplacian matrices
- Minimum-cut partitioning
- Fiedler vector and value
- Ratio-cut minimization