Network Community Detection

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

March 1, 2018
Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Communities within networks

- Networks play the powerful role of bridging the local and the global
 - Explain how processes at node/link level ripple to a population

- We often think of (social) networks as having the following structure

- Q: Can we gain insights behind this conceptualization?
In the 60s., M. Granovetter interviewed people who changed jobs
- Asked about how they discovered their new jobs
- Many learned about opportunities through personal contacts

Surprisingly, contacts were often acquaintances rather than friends
⇒ Close friends likely have the most motivation to help you out

Q: Why do distant acquaintances convey the crucial information?

Granovetter’s answer and impact

- Linked two different perspectives on distant friendships
 - **Structural**: focus on how friendships span the network
 - **Interpersonal**: local consequences of friendship being strong or weak
- Intertwining between structural and informational role of an edge

1) **Structurally-embedded edges** within a community:
 - Tend to be socially strong; and
 - Are highly redundant in terms of information access

2) **Long-range edges** spanning different parts of the network:
 - Tend to be socially weak; and
 - Offer access to useful information (e.g., on a new job)

- **General way of thinking about the architecture of social networks**
 - Answer transcends the specific setting of job-seeking
Triadic closure

- A basic principle of network formation is that of **triadic closure**

 "If two people have a friend in common, then there is an increased likelihood that they will become friends in the future"

- Emergent edges in a social network likely to close triangles

 ⇒ More likely to see the red edge than the blue one

- Prevalence of triadic closure measured by the **clustering coefficient**

 \[
 cl(v) = \frac{\# \text{pairs of friends of } v \text{ that are connected}}{\# \text{pairs of friends of } v} = \frac{\# \Delta \text{ involving } v}{d_v(d_v - 1)/2}
 \]

 \[
 \begin{align*}
 v & \quad cl(v)=0 \\
 v & \quad cl(v)=1/3 \\
 v & \quad cl(v)=1
 \end{align*}
 \]
Reasons for triadic closure

Triadic closure is intuitively very natural. Reasons why it operates:

1) Increased opportunity for B and C to meet
 ⇒ Both spend time with A

2) There is a basis for mutual trust among B and C
 ⇒ Both have A as a common friend

3) A may have an incentive to bring B and C together
 ⇒ Lack of friendship may become a source of latent stress

Premise based on theories dating to early work in social psychology

Bridges

- **Ex:** Consider the simple social network in the figure

![Network Diagram]

- A’s links to C, D, and E connect her to a tightly knit group
 - A, C, D, and E likely exposed to similar opinions

- A’s link to B seems to reach to a different part of the network
 - Offers her access to views she would otherwise not hear about

- A-B edge is called a **bridge**, its removal disconnects the network
 - Giant components suggest that **bridges are quite rare**
Local bridges

- **Ex**: In reality, the social network is larger and may look as

 ![Diagram](image)

 ⇒ Without A, B knowing, may have a longer path among them

- **Def**: Span of \((u, v)\) is the \(u - v\) distance when the edge is removed

- **Def**: A local bridge is and edge with span \(> 2\)
 ⇒ **Ex**: Edge A-B is a local bridge with span 3

- Local bridges with large spans \(\approx\) bridges, but less extreme
 ⇒ Link with triadic closure: local bridges not part of triangles
Strong triadic closure property

- Categorize all edges in the network according to their strength
 - *Strong ties* corresponding to friendship
 - *Weak ties* corresponding to acquaintances

- Opportunity, trust, incentive act more powerfully for strong ties
 - Suggests qualitative assumption termed **strong triadic closure**

 \[\text{“Two strong ties implies a third edge exists closing the triangle”}\]

- Abstraction to reason about consequences of strong/weak ties
Local bridges and weak ties

a) Local, interpersonal distinction between edges ⇒ strong/weak ties
b) Global, structural notion ⇒ local bridges present or absent

Theorem

If a node satisfies the strong triadic closure property and is involved in at least two strong ties, then any local bridge incident to it is a weak tie.

- Links structural and interpersonal perspectives on friendships

- Back to job-seeking, local bridges connect to new information
 ⇒ Conceptual span is related to their weakness as social ties
 ⇒ Surprising dual role suggests a “strength of weak ties”
Proof by contradiction

Proof.

- We will argue by contradiction. Suppose node A has 2 strong ties
- Moreover, suppose A satisfies the strong triadic closure property

Let A-B be a local bridge as well as a strong tie

⇒ Edge B-C must exist by strong triadic closure
- This contradicts A-B is a local bridge (cannot be part of a triangle)
Q: Can one test Granovetter’s theory with real network data?
⇒ Hard for decades. Lack of large-scale social interaction surveys

Now we have “who-calls-whom” networks with both key ingredients
⇒ Network structure of communication among pairs of people
⇒ Total talking time, i.e., a proxy for tie strength

Ex: Cell-phone network spanning ≈ 20% of country's population

Generalizing weak ties and local bridges

- Model described so far imposes sharp dichotomies on the network
 - Edges are either strong or weak, local bridges or not
 - Convenient to have proxies exhibiting smoother gradations

- Numerical tie strength
 - Minutes spent in phone conversations
 - Order edges by strength, report their percentile occupancy

- Generalize local bridges
 - Define neighborhood overlap of edge \((i, j)\)

 \[
 O_{ij} = \frac{|n(i) \cap n(j)|}{|n(i) \cup n(j)|}; \quad n(i) := \{j \in V : (i, j) \in E\}
 \]

- Desirable property: \(O_{ij} = 0\) if \((i, j)\) is a local bridge
Empirical results

- **Strength of weak ties prediction**: O_{ij} grows with tie strength
 ⇒ Dependence borne out very cleanly by the data (○ points)

- Randomly permuted tie strengths, fixed network structure (□ points)
 ⇒ Effectively removes the coupling between O_{ij} and tie strength
Phone network and tie strengths

- Cell-phone network with color-coded tie strengths

1) Stronger ties more structurally-embedded (within communities)
2) Weaker ties correlate with long-range edges joining communities
Randomly permuted tie strengths

- Same cell-phone network with randomly permuted tie strengths

- No apparent link between structural and interpersonal roles of edges
Weak ties linking communities

- **Strength of weak ties prediction**: long-range, weak ties bridge communities

![Graphs showing edge removal by strength and overlap](image)

- Delete *decreasingly weaker* (small overlap) edges one at a time
 ⇒ Giant component shrinks rapidly, eventually disappears

- Repeat with strong-to-weak tie deletions ⇒ slower shrinkage observed
We often think of (social) networks as having the following structure:

- Long-range, weak ties
- Embedded, strong ties

Conceptual picture supported by Granovetter's strength of weak ties.
Network communities

Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Communities

- Nodes in real-world networks organize into **communities**
 - Example: families, clubs, political organizations, proteins by function, . . .

- Supported by Granovetter's **strength of weak ties** theory

- Community (a.k.a. group, cluster, module) members are:
 - Well connected among themselves
 - Relatively well separated from the rest

- Exhibit high cohesiveness w.r.t. the underlying relational patterns
Zachary’s karate club

- Social interactions among members of a karate club in the 70s

- Zachary witnessed the club split in two during his study
 - Toy network, yet canonical for community detection algorithms
 - Offers “ground truth” community membership (a rare luxury)
Political blogs

- The political blogosphere for the US 2004 presidential election

- Community structure of liberal and conservative blogs is apparent
 \[\Rightarrow\] People have a stronger tendency to interact with “equals”
Electrical power grid

- Split power network into areas with minimum inter-area interactions

Applications:
- Decide control areas for distributed power system state estimation
- Parallel computation of power flow
- Controlled islanding to prevent spreading of blackouts
High-school students

- Network of social interactions among high-school students

- Strong assortative mixing, with race as latent characteristic
Physicists working on Network Science

- Coauthorship network of physicists publishing networks’ research

- Tightly-knit subgroups are evident from the network structure
College football

- Vertices are NCAA football teams, edges are games during Fall’00

- Communities are the NCAA conferences and independent teams
Facebook friendships

- Facebook egonet with 744 vertices and 30K edges

- Asked “ego” to identify social circles to which friends belong
 ⇒ Company, high-school, basketball club, squash club, family
Network community detection

Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Unveiling network communities

- Nodes in real-world networks organize into communities

 Ex: families, clubs, political organizations, proteins by function, . . .

- Community (a.k.a. group, cluster, module) members are:
 ⇒ Well connected among themselves
 ⇒ Relatively well separated from the rest

- Exhibit high cohesiveness w.r.t. the underlying relational patterns

- Q: How can we automatically identify such cohesive subgroups?
Community detection and graph partitioning

- **Community detection** is a challenging clustering problem

 C1) No consensus on the structural definition of community
 C2) Node subset selection often intractable
 C3) Lack of ground-truth for validation

- Useful for exploratory analysis of network data

 Ex: clues about social interactions, content-related web pages

Graph partitioning

Split V into **given number** of non-overlapping groups of **given sizes**

- **Criterion:** number of edges between groups is minimized (more soon)

 Ex: task-processor assignment for load balancing

- **Number and sizes of groups unspecified in community detection**

 ⇒ Identify the natural fault lines along which a network separates
Graph partitioning is hard

- **Ex:** Graph bisection problem, i.e., partition V into two groups
 - Suppose the groups V_1 and V_2 are non-overlapping
 - Suppose groups have equal size, i.e., $|V_1| = |V_2| = N_v/2$
 - Minimize edges running between vertices in different groups

- Simple problem to describe, but hard to solve

\[
\text{Number of ways to partition } V : \binom{N_v}{N_v/2} \approx \frac{2^{N_v}}{\sqrt{N_v}}
\]

⇒ Used Stirling’s formula $N_v! \approx \sqrt{2\pi N_v} (N_v/e)^{N_v}$

⇒ Exhaustive search intractable beyond toy small-sized networks

- No smart (i.e., polynomial time) algorithm, **NP-hard problem**
 ⇒ Seek good heuristics, e.g., relaxations of natural criteria
Strength of weak ties motivation

- Local bridges connect weakly interacting parts of the network

![Network Diagram]

- **Q:** What about removing those to reveal communities?

![Network Diagram]

- **Challenges**
 - Multiple local bridges. Some better than others? Which one first?
 - There might be no local bridge, yet an apparent natural division
Edge betweenness centrality

- **Idea:** high edge betweenness centrality to identify weak ties
 - High $c_{Be}(e)$ edges carry large traffic volume over shortest paths
 - Position at the interface between tightly-knit groups

- **Ex:** cell-phone network with colored edge strength and betweenness

![Edge strength](image1)
![Edge betweenness](image2)
Girvan-Newman’s method

- **Girvan-Newmann’s method** extremely simple conceptually
 - Find and remove “spanning links” between cohesive subgroups

- **Algorithm**: Repeat until there are no edges left
 - Calculate the betweenness centrality $c_{Be}(e)$ of all edges
 - Remove edge(s) with highest $c_{Be}(e)$

- Connected components are the communities identified
 - **Divisive method**: network falls apart into pieces as we go
 - **Nested partition**: larger communities potentially host denser groups
 - Recompute edge betweenness in $O(N_v N_e)$-time per step

Example: The algorithm in action

Original graph

Step 1

Step 2

Step 3

Nested graph decomposition
Scientific collaboration network

- **Ex:** Coauthorship network of scientists at the Santa Fe Institute

- Communities found can be traced to different disciplines
Hierarchical clustering

- Greedy approach to iteratively modify successive candidate partitions
 - Agglomerative: successive coarsening of partitions through merging
 - Divisive: successive refinement of partitions through splitting

- Per step, partitions are modified in a way that minimizes a cost
 - Measures of (dis)similarity x_{ij} between pairs of vertices v_i and v_j
 - Ex: Euclidean distance dissimilarity

$$x_{ij} = \sqrt{\sum_{k \neq i,j} (A_{ik} - A_{jk})^2}$$

- Method returns an entire hierarchy of nested partitions of the graph
 ⇒ Can range fully from $\{\{v_1\}, \ldots, \{v_{N_v}\}\}$ to V
An agglomerative hierarchical clustering algorithm proceeds as follows:

S1: Choose a dissimilarity metric and compute it for all vertex pairs

S2: Assign each vertex to a group of its own

S3: Merge the pair of groups with smallest dissimilarity

S4: Compute the dissimilarity between the new group and all others

S5: Repeat from S3 until all vertices belong to a single group

Need to define group dissimilarity from pairwise vertex counterparts:

- **Single linkage:** group dissimilarity x_{G_i, G_j}^{SL} follows single most dissimilar pair

$$x_{G_i, G_j}^{SL} = \max_{u \in G_i, v \in G_j} x_{uv}$$

- **Complete linkage:** every vertex pair highly dissimilar to have high x_{G_i, G_j}^{CL}

$$x_{G_i, G_j}^{CL} = \min_{u \in G_i, v \in G_j} x_{uv}$$
Hierarchical partitions often represented with a **dendrogram**

- Shows groups found in the network at all algorithmic steps
 \[\Rightarrow \text{Split the network at different resolutions} \]
- **Ex:** Girvan-Newman’s algorithm for the Zachary’s karate club

Q: Which of the divisions is the most useful/optimal in some sense?

A: Need to define metrics of graph clustering quality
Modularity maximization

Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Modularity

- Size of communities typically unknown ⇒ Identify automatically

- **Modularity** measures how well a network is partitioned in communities
 - **Intuition:** density of edges in communities higher than expected

- Consider a graph G and a partition into groups $s \in S$. **Modularity:**

 $$Q(G, S) \propto \sum_{s \in S} [(\# \text{ of edges within group } s) - \mathbb{E} [\# \text{ of such edges}]]$$

- Formally, after normalization such that $Q(G, S) \in [-1, 1]$

 $$Q(G, S) = \frac{1}{2N_e} \sum_{s \in S} \sum_{i,j \in s} \left[A_{ij} - \frac{d_id_j}{2N_e}\right]$$

 ⇒ **Null model:** randomize edges, preserving degree distribution
Expected connectivity among nodes

- **Null model:** randomize edges preserving degree distribution in G
 - Random variable $A_{ij} := \mathbb{I} \{(i, j) \in E\}$
 - Expectation is $\mathbb{E}[A_{ij}] = P((i, j) \in E)$

- Suppose node i has degree d_i, node j has degree d_j
 - Degree is “# of spokes” per node, $2N_e$ spokes in G

- Probability spoke i_k connected to j is $\frac{d_j}{2N_e - 1} \approx \frac{d_j}{2N_e}$, hence

\[
P((i, j) \in E) = P\left(\bigcup_{i_k=1}^{d_i} \{\text{spoke } i_k \text{ connected to } j\} \right)
\]

\[
= \sum_{i_k=1}^{d_i} P(\text{spoke } i_k \text{ connected to } j) = \frac{d_id_j}{2N_e}
\]
Assessing clustering quality

- Can evaluate the modularity of each partition in a dendrogram
 ⇒ Maximum value gives the “best” community structure

- Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

- Q: Why not optimize $Q(G, S)$ directly over possible partitions S?
Modularity revisited

- Recall our definition of modularity

\[
Q(G, S) = \frac{1}{2N_e} \sum_{s \in S} \sum_{i,j \in s} \left[A_{ij} - \frac{d_i d_j}{2N_e} \right]
\]

- Let \(g_i \) be the group membership of vertex \(i \), and rewrite

\[
Q(G, S) = \frac{1}{2N_e} \sum_{i,j \in V} \left[A_{ij} - \frac{d_i d_j}{2N_e} \right] \mathbb{I} \{ g_i = g_j \}
\]

- Define for convenience the summands \(B_{ij} := A_{ij} - \frac{d_i d_j}{2N_e} \)

\(\Rightarrow \) Both marginal sums of \(B_{ij} \) vanish, since e.g.,

\[
\sum_j B_{ij} = \sum_j A_{ij} - \frac{d_i}{2N_e} \sum_j d_j = d_i - \frac{d_i}{2N_e} 2N_e = 0
\]
Consider (for simplicity) dividing the network in two groups

Binary community membership variables per vertex

\[s_i = \begin{cases}
+1, & \text{vertex } i \text{ belongs to group 1} \\
-1, & \text{vertex } i \text{ belongs to group 2}
\end{cases} \]

Using the identity \(\frac{1}{2}(s_is_j + 1) = I\{g_i = g_j\} \), the modularity is

\[
Q(G, S) = \frac{1}{2N_e} \sum_{i,j \in V} \left[A_{ij} - \frac{d_i d_j}{2N_e} \right] I\{g_i = g_j\} \\
= \frac{1}{4N_e} \sum_{i,j \in V} B_{ij}(s_is_j + 1)
\]

Recall \(\sum_j B_{ij} = 0 \) to obtain the simpler expression

\[
Q(G, S) = \frac{1}{4N_e} \sum_{i,j \in V} B_{ij}s_is_j
\]
Optimizing modularity

Let $\mathbf{B} \in \mathbb{R}^{N_v \times N_v}$ be the modularity matrix with entries $B_{ij} := A_{ij} - \frac{d_i d_j}{2N_e}$.

Any partition S is defined by the vector $\mathbf{s} = [s_1, \ldots, s_{N_v}]^\top$.

Modularity as criterion for graph bisection yields the formulation

$$Q(G, S) = \frac{1}{4N_e} \sum_{i,j \in \mathcal{V}} B_{ij} s_i s_j = \frac{1}{4N_e} \mathbf{s}^\top \mathbf{B} \mathbf{s}$$

Modularity as criterion for graph bisection yields the formulation

$$\hat{\mathbf{s}} = \arg \max_{\mathbf{s} \in \{\pm 1\}^{N_v}} \mathbf{s}^\top \mathbf{B} \mathbf{s}$$

Nasty binary constraints $\mathbf{s} \in \{\pm 1\}^{N_v}$ (hypercube vertices)

Modularity optimization is NP-hard [Brandes et al ’06]
Relax the constraint \(s \in \{\pm 1\}^{N_v} \) to \(s \in \mathbb{R}^{N_v} \), \(\|s\|_2 = 1 \)

\[\hat{s} = \arg \max_s s^T Bs, \quad \text{s. to } s^T s = 1 \]

Associate a Langrange multiplier \(\lambda \) to the constraint \(s^T s = 1 \)

\[\Rightarrow \text{Optimality conditions yields} \]

\[\nabla_s [s^T Bs + \lambda(1 - s^T s)] = 0 \Rightarrow Bs = \lambda s \]

Conclusion is that \(s \) is an eigenvector of \(B \) with eigenvalue \(\lambda \)

Q: Which eigenvector should we pick?

\[\Rightarrow \text{At optimum } Bs = \lambda s \text{ so objective becomes} \]

\[s^T Bs = \lambda s^T s = \lambda \]

A: To maximize modularity pick the dominant eigenvector of \(B \)
Let u_1 be the dominant eigenvector of B, with i-th entry $[u_1]_i$

\Rightarrow Cannot just set $s = u_1$ because $u_1 \neq \{\pm 1\}^N$

\Rightarrow **Best effort**: maximize their similarity $s^T u_1$ which gives

$$s_i = \text{sign}([u_1]_i) := \begin{cases} +1, & [u_1]_i > 0 \\ -1, & [u_1]_i \leq 0 \end{cases}$$

Spectral modularity maximization algorithm

S1: Compute modularity matrix B with entries $B_{ij} = A_{ij} - \frac{d_i d_j}{2N_e}$

S2: Find dominant eigenvector u_1 of B (e.g., power method)

S3: Cluster membership of vertex i is $s_i = \text{sign}([u_1]_i)$

Multiple (>2) communities through e.g., repeated graph bisection
Example: Zachary’s karate club

- Spectral modularity maximization
 - Shapes of vertices indicate community membership
 - Dotted line indicates partition found by the algorithm
 - Vertex colors indicate the strength of their membership
Spectral graph partitioning

Community structure in networks

Examples of network communities

Network community detection

Modularity maximization

Spectral graph partitioning
Graph bisection

Consider an undirected graph $G(V, E)$

Ex: Graph bisection problem, i.e., partition V into two groups
 - Groups V_1 and $V_2 = V_1^C$ are non-overlapping
 - Groups have given size, i.e., $|V_1| = N_1$ and $|V_2| = N_2$

Q: What is a good criterion to partition the graph?

A: We have already seen modularity. Let’s see a different one
Desiderata: Community members should be
- Well connected among themselves; and
- Relatively well separated from the rest of the nodes

Def: A cut C is the number of edges between groups V_1 and $V \setminus V_1$

$$C := \text{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} A_{ij}$$

Natural criterion: minimize cut, i.e., edges across groups V_1 and V_2
From graph cuts . . .

- Binary community membership variables per vertex

\[s_i = \begin{cases}
+1, & \text{vertex } i \text{ belongs to } V_1 \\
-1, & \text{vertex } i \text{ belongs to } V_2
\end{cases} \]

- Let \(g_i \) be the group membership of vertex \(i \), such that

\[\mathbb{I}\{g_i \neq g_j\} = \frac{1}{2}(1 - s_is_j) = \begin{cases}
1, & i \text{ and } j \text{ in different groups} \\
0, & i \text{ and } j \text{ in the same group}
\end{cases} \]

- Cut expressible in terms of the variables \(s_i \) as

\[C = \sum_{i \in V_1, j \in V_2} A_{ij} = \frac{1}{2} \sum_{i,j \in V} A_{ij}(1 - s_is_j) \]
First summand in $C = \frac{1}{2} \sum_{i,j} A_{ij} (1 - s_i s_j)$ is

$$\sum_{i,j \in V} A_{ij} = \sum_{i \in V} d_i = \sum_{i \in V} d_i s_i^2 = \sum_{i,j \in V} d_i s_i s_j \mathbb{1} \{i = j\}$$

Used $s_i^2 = 1$ since $s_i \in \{\pm 1\}$. The cut becomes

$$C = \frac{1}{2} \sum_{i,j \in V} (d_i \mathbb{1} \{i = j\} - A_{ij}) s_i s_j = \frac{1}{2} \sum_{i,j \in V} L_{ij} s_i s_j$$

Cut in terms of L_{ij}, entries of the graph Laplacian $L = D - A$, i.e.,

$$C(s) = \frac{1}{2} s^\top L s, \quad s := [s_1, \ldots, s_N]^\top$$

Maximize modularity $Q(s) \propto s^\top B s$ vs. Minimize cut $C(s) \propto s^\top L s$
Since \(|V_1| = N_1 \) and \(|V_2| = N_2 = N - N_1 \), we have the constraint
\[
\sum_{i \in V} s_i = \sum_{i \in V_1} (+1) + \sum_{i \in V_2} (-1) = N_1 - N_2 \Rightarrow \mathbf{1}^\top \mathbf{s} = N_1 - N_2
\]

- **Minimum-cut criterion** for graph bisection yields the formulation

\[
\hat{s} = \arg \min_{\mathbf{s} \in \{\pm 1\}^N} \mathbf{s}^\top \mathbf{Ls}, \quad \text{s. to } \mathbf{1}^\top \mathbf{s} = N_1 - N_2
\]

- Again, binary constraints \(\mathbf{s} \in \{\pm 1\}^N \) render cut minimization hard
 \(\Rightarrow \) **Relax binary constraints** as with modularity maximization
Laplacian matrix properties revisited

- **Smoothness:** For any vector \(\mathbf{x} \in \mathbb{R}^{N_v} \) of “vertex values”, one has

\[
\mathbf{x}^\top \mathbf{L} \mathbf{x} = \sum_{i,j \in V} L_{ij} x_i x_j = \sum_{(i,j) \in E} (x_i - x_j)^2
\]

which can be minimized to enforce smoothness of functions on \(G \)

- **Positive semi-definiteness:** Follows since \(\mathbf{x}^\top \mathbf{L} \mathbf{x} \geq 0 \) for all \(\mathbf{x} \in \mathbb{R}^{N_v} \)

- **Spectrum:** All eigenvalues of \(\mathbf{L} \) are real and non-negative

 \(\Rightarrow \) Eigenvectors form an orthonormal basis of \(\mathbb{R}^{N_v} \)

- **Rank deficiency:** Since \(\mathbf{L} \mathbf{1} = \mathbf{0} \), \(\mathbf{L} \) is rank deficient

- **Spectrum and connectivity:** The smallest eigenvalue \(\lambda_1 \) of \(\mathbf{L} \) is 0

 - If the second-smallest eigenvalue \(\lambda_2 \neq 0 \), then \(G \) is connected
 - If \(\mathbf{L} \) has \(n \) zero eigenvalues, \(G \) has \(n \) connected components
Further intuition

Since $s^T L s = \sum_{(i,j) \in E} (s_i - s_j)^2$, the minimum-cut formulation is

$$\hat{s} = \arg \min_{s \in \{\pm 1\}^N} \sum_{(i,j) \in E} (s_i - s_j)^2, \text{ s. to } 1^T s = N_1 - N_2$$

Q: Does this equivalent cost function make sense? A: Absolutely!

⇒ Edges joining vertices in the same group do not add to the sum
⇒ Edges joining vertices in different groups add 4 to the sum

Minimize cut: assign values s_i to nodes i such that few edges cross 0
Minimum-cut relaxation

- Relax the constraint $s \in \{\pm 1\}^{N_v}$ to $s \in \mathbb{R}^{N_v}$, $\|s\|_2 = 1$

$$\hat{s} = \arg \min_{s} s^\top L s, \quad \text{s. to } 1^\top s = N_1 - N_2 \text{ and } s^\top s = 1$$

⇒ Straightforward to solve using Lagrange multipliers

- Characterization of the solution \hat{s} [Fiedler '73]:

$$\hat{s} = v_2 + \frac{N_1 - N_2}{N_v} 1$$

⇒ The ‘second-smallest’ eigenvector v_2 of L satisfies $1^\top v_2 = 0$

⇒ Minimum cut is $C(\hat{s}) = \hat{s}^\top L \hat{s} = v_2^\top L v_2 \propto \lambda_2$

- If the graph G is disconnected then we know $\lambda_2 = 0 = C(\hat{s})$

⇒ If G is amenable to bisection, the cut is small and so is λ_2
Consider a partition of G into V_1 and V_2, where $|V_1| \leq |V_2|$

If G is connected, then the Cheeger inequality asserts

$$\frac{\alpha^2}{2d_{\text{max}}} \leq \lambda_2 \leq 2\alpha$$

where $\alpha = \frac{C}{|V_1|}$ and d_{max} is the maximum node degree

⇒ Certifies that λ_2 gives a useful bound

Q: How to obtain the binary cluster labels $s \in \{-1, 1\}^N$ from $\hat{s} \in \mathbb{R}^N$?

Again, maximize the similarity measure $s^\top \hat{s}$

$$s_i = \text{sign}([v_2]_i) := \begin{cases} +1, & [v_2]_i > 0 \\ -1, & [v_2]_i \leq 0 \end{cases}$$

Spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries $L_{ij} = D_{ij} - A_{ij}$

S2: Find ‘second smallest’ eigenvector v_2 of L

S3: Cluster membership of vertex i is $s_i = \text{sign}([v_2]_i)$

Complexity: efficient Lanczos algorithm variant in $O\left(\frac{N_e}{\lambda_3 - \lambda_2}\right)$ time

Nomenclature: v_2 is known as the Fiedler vector

\Rightarrow Eigenvalue λ_2 is Fiedler value, or algebraic connectivity of G
Spectral gap in Fiedler vector entries

- Suppose G is disconnected and has two connected components
 - L is block diagonal, two smallest eigenvectors indicate groups, i.e.,
 \[
 v_1 = [1, 1, \ldots, 1, 0, \ldots, 0]^\top \quad \text{and} \quad v_2 = [0, 0, \ldots, 0, 1, \ldots, 1]^\top
 \]

- If G is connected but amenable to bisection, $v_1 = 1$ and $\lambda_2 \approx 0$
 - Also, $1^\top v_2 = \sum_i [v_2]_i = 0 \implies$ Positive and negative entries in v_2
Consider the graph bisection problem with unknown group sizes

Minimizing the graph cut may be no longer meaningful!

Cost $C := \sum_{i \in V_1, j \in V_2} A_{ij}$ agnostic to groups’ internal structure

Better criterion is the ratio cut R defined as

$$R := \frac{C}{|V_1|} + \frac{C}{|V_2|}$$

Balanced partitions: small community is penalized by the cost
Fix a bisection S of G into groups V_1 and V_2

Define $\mathbf{f} : \mathbf{f}(S) = [f_1, \ldots, f_{N_v}]^\top \in \mathbb{R}^{N_v}$ with entries

$$f_i = \begin{cases} \sqrt{\frac{|V_2|}{|V_1|}}, & \text{vertex } i \text{ belongs to } V_1 \\ -\sqrt{\frac{|V_1|}{|V_2|}}, & \text{vertex } i \text{ belongs to } V_2 \end{cases}$$

One can establish the following properties:

- **P1:** $\mathbf{f}^\top \mathbf{L} \mathbf{f} = N_v R(S)$;
- **P2:** $\sum_i f_i = 0$, i.e., $\mathbf{1}^\top \mathbf{f} = 0$; and
- **P3:** $\|\mathbf{f}\|^2 = N_v$

From **P1-P3** it follows that ratio-cut minimization is equivalent to

$$\min_{\mathbf{f}} \mathbf{f}^\top \mathbf{L} \mathbf{f}, \quad \text{s. to } \mathbf{1}^\top \mathbf{f} = 0 \text{ and } \mathbf{f}^\top \mathbf{f} = N_v$$
Ratio cut and spectral graph bisection

- Ratio-cut minimization is also NP-hard. Relax to obtain
 \[
 \hat{s} = \arg \min_{s \in \mathbb{R}^{N_v}} s^T L s, \quad \text{s. to } 1^T s = 0 \text{ and } s^T s = N_v
 \]

- Partition \(\hat{S}\) also given by the spectral graph bisection algorithm

 S1: Compute Laplacian matrix \(L\) with entries \(L_{ij} = D_{ij} - A_{ij}\)

 S2: Find ‘second smallest’ eigenvector \(v_2\) of \(L\)

 S3: Cluster membership of vertex \(i\) is \(s_i = \text{sign}([v_2]_i)\)

- Alternative criterion is the normalized cut \(NC\) defined as
 \[
 NC = \frac{C}{\text{vol}(V_1)} + \frac{C}{\text{vol}(V_2)}, \quad \text{vol}(V_i) := \sum_{\nu \in V_i} d_{\nu}, \; i = 1, 2
 \]

 \(\Rightarrow\) Corresponds to using the normalized Laplacian \(D^{-1}L\)
Glossary

- Network community
- (Strong) triadic closure
- Clustering coefficient
- Bridges and local bridges
- Tie strength
- Neighborhood overlap
- Strength of weak ties
- Zachary’s karate club
- Community detection
- Graph partitioning and bisection
- Non-overlapping communities
- Edge betweenness centrality
- Girvan-Newmann method
- Hierarchical clustering
- Dendrogram
- Single and complete linkage
- Modularity
- Spectral modularity maximization
- Modularity and Laplacian matrices
- Minimum-cut partitioning
- Fiedler vector and value
- Ratio-cut minimization