Centrality Measures and Link Analysis

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

February 22, 2019
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Quantifying vertex importance

In network analysis many questions relate to vertex importance.

Example

- **Q1**: Which actors in a social network hold the ‘reins of power’?
- **Q2**: How authoritative is a WWW page considered by peers?
- **Q3**: The ‘knock-out’ of which genes is likely to be lethal?
- **Q4**: How critical to the daily commute is a subway station?

Measures of vertex centrality quantify such notions of importance.

⇒ Degrees are simplest centrality measures. Let’s study others.
Closeness centrality

- **Rationale**: ‘central’ means a vertex is ‘close’ to many other vertices

- **Def**: Distance $d(u, v)$ between vertices u and v is the length of the shortest $u - v$ path. Oftentimes referred to as geodesic distance

- **Closeness centrality** of vertex v is given by

$$c_{Cl}(v) = \frac{1}{\sum_{u \in V} d(u, v)}$$

- Interpret $v^* = \arg \max_v c_{Cl}(v)$ as the most approachable node in G
To compare with other centrality measures, often normalize to $[0, 1]$

$$c_{Cl}(v) = \frac{N_v - 1}{\sum_{u \in V} d(u, v)}$$

Computation: need all pairwise shortest path distances in G

\Rightarrow Dijkstra’s algorithm in $O(N_v^2 \log N_v + N_v N_e)$ time

Limitation 1: sensitivity, values tend to span a small dynamic range

\Rightarrow Hard to discriminate between central and less central nodes

Limitation 2: assumes connectivity, if not $c_{Cl}(v) = 0$ for all $v \in V$

\Rightarrow Compute centrality indices in different components
Betweenness centrality

- **Rationale:** ‘central’ node is (in the path) ‘between’ many vertex pairs

- **Betweenness centrality** of vertex v is given by

$$c_{Be}(v) = \sum_{s \neq t \neq v \in V} \frac{\sigma(s, t | v)}{\sigma(s, t)}$$

 - $\sigma(s, t)$ is the total number of $s - t$ shortest paths
 - $\sigma(s, t | v)$ is the number of $s - t$ shortest paths through $v \in V$

- Interpret $v^* = \arg \max_v c_{Be}(v)$ as the **controller of information flow**
Computational considerations

Notice that a $s - t$ shortest path goes through v if and only if

$$d(s, t) = d(s, v) + d(v, t)$$

Betweenness centralities can be naively computed for all $v \in V$ by:

- **Step 1:** Use Dijkstra to tabulate $d(s, t)$ and $\sigma(s, t)$ for all s, t
- **Step 2:** Use the tables to identify $\sigma(s, t|v)$ for all v
- **Step 3:** Sum the fractions to obtain $c_{Be}(v)$ for all v ($O(N_v^3)$ time)

Cubic complexity can be prohibitive for large networks

$O(N_v N_e)$-time algorithm for unweighted graphs in:

Eigenvector centrality

- **Rationale**: ‘central’ vertex if ‘in-neighbors’ are themselves important
 ⇒ Compare with ‘importance-agnostic’ degree centrality

- **Eigenvector centrality** of vertex \(v \) is implicitly defined as

\[
c_{Ei}(v) = \alpha \sum_{(u,v) \in E} c_{Ei}(u)
\]

- No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- Same for 6
Eigenvalue problem

- Recall the adjacency matrix \(A \) and

\[
c_{Ei}(v) = \alpha \sum_{(u,v) \in E} c_{Ei}(u)
\]

- Vector \(c_{Ei} = [c_{Ei}(1), \ldots, c_{Ei}(N)]^\top \) solves the eigenvalue problem

\[
Ac_{Ei} = \alpha^{-1}c_{Ei}
\]

⇒ Typically \(\alpha^{-1} \) chosen as largest eigenvalue of \(A \) [Bonacich'87]

- If \(G \) is undirected and connected, by Perron's Theorem then

⇒ The largest eigenvalue of \(A \) is positive and simple
 ⇒ All the entries in the dominant eigenvector \(c_{Ei} \) are positive

- Can compute \(c_{Ei} \) and \(\alpha^{-1} \) via \(O(N^2) \) complexity power iterations

\[
c_{Ei}(k + 1) = \frac{Ac_{Ei}(k)}{\|Ac_{Ei}(k)\|}, \quad k = 0, 1, \ldots
\]
Example: Comparing centrality measures

- Q: Which vertices are more central? A: It depends on the context

Each measure identifies a different vertex as most central
⇒ None is ‘wrong’, they target different notions of importance
Example: Comparing centrality measures

- Q: Which vertices are more central? A: It depends on the context

- Small green vertices are arguably more peripheral
 ⇒ Less clear how the yellow, dark blue and red vertices compare
Case study

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Robustness to noise in network data is of practical importance

Approaches have been mostly empirical
 - Find average response in random graphs when perturbed
 - Not generalizable and does not provide explanations

Characterize behavior in noisy real graphs
 - Degree and closeness are more reliable than betweenness

Q: What is really going on?
 - Framework to study formally the stability of centrality measures

Definitions for weighted digraphs

- **Weighted and directed graphs** \(G(V, E, W) \)
 - Set \(V \) of \(N_v \) vertices
 - Set \(E \subseteq V \times V \) of edges
 - Map \(W : E \rightarrow \mathbb{R}_{++} \) of weights in each edge

- Path \(P(u, v) \) is an ordered sequence of nodes from \(u \) to \(v \)

- When weights represent dissimilarities
 - Path length is the sum of the dissimilarities encountered

- Shortest path length \(s_G(u, v) \) from \(u \) to \(v \)

\[
s_G(u, v) := \min_{P(u, v)} \sum_{i=0}^{\ell-1} W(u_i, u_{i+1})
\]
Stability of centrality measures

- Space of graphs $G_{(V,E)}$ with (V, E) as vertex and edge set
- Define the metric $d_{(V,E)}(G, H) : G_{(V,E)} \times G_{(V,E)} \rightarrow \mathbb{R}^+$

$$d_{(V,E)}(G, H) := \sum_{e \in E} |W_G(e) - W_H(e)|$$

- **Def:** A centrality measure $c(\cdot)$ is **stable** if for any vertex $v \in V$ in any two graphs $G, H \in G_{(V,E)}$, then

$$|c^G(v) - c^H(v)| \leq K_G d_{(V,E)}(G, H)$$

- K_G is a constant depending on G only
- Stability is related to **Lipschitz continuity** in $G_{(V,E)}$
- Independent of the definition of $d_{(V,E)}$ (equivalence of norms)

- Node importance should be robust to small perturbations in the graph
Degree centrality

- **Sum of the weights of incoming arcs**

 \[c_{De}(v) := \sum_{u|(u,v)\in E} W(u, v) \]

 - Applied to graphs where the weights in \(W \) represent similarities
 - High \(c_{De}(v) \) \(\Rightarrow \) \(v \) similar to its large number of neighbors

Proposition 1

For any vertex \(v \in V \) in any two graphs \(G, H \in G(V, E) \), we have that

\[|c_{De}^G(v) - c_{De}^H(v)| \leq d_{(V,E)}(G, H) \]

i.e., degree centrality \(c_{De} \) is a stable measure

- Can show closeness and eigenvector centralities are also stable
Betweenness centrality

- Look at the shortest paths for every two nodes distinct from \(v \)
 ⇒ Sum the proportion that contains node \(v \)

\[
c_{Be}(v) := \sum_{s \neq v \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
\]

- \(\sigma(s, t) \) is the total number of \(s \rightarrow t \) shortest paths
- \(\sigma(s, t|v) \) is the number of those paths going through \(v \)

Proposition 2
The betweenness centrality measure \(c_{Be} \) is not stable
Instability of betweenness centrality

- Compare the value of $c_{Be}(v)$ in graphs G and H

 \[c_{Be}^G(v) = 9 \]

 \[c_{Be}^H(v) = 0 \]

 \[\Rightarrow \text{Centrality value } c_{Be}^H(v) = 0 \text{ remains unchanged for any } \epsilon > 0 \]

- For small values of ϵ, graphs G and H become arbitrarily similar

 \[9 = |c_{Be}^G(v) - c_{Be}^H(v)| \leq K_G d_{(V,E)}(G, H) \rightarrow 0 \]

 \[\Rightarrow \text{Inequality is not true for any constant } K_G \]
Stable betweenness centrality

- Define $G^v = (V^v, E^v, W^v)$, $V^v = V \setminus \{v\}$, $E^v = E |_{V^v \times V^v}$, $W^v = W |_{E^v \times E^v}$

 $\Rightarrow G^v$ obtained by deleting from G node v and edges connected to v

- Stable betweenness centrality $c_{SBe}(v)$

 $$c_{SBe}(v) := \sum_{s \neq v \neq t \in V} s_{G^v}(s, t) - s_G(s, t)$$

 \Rightarrow Captures impact of deleting v on the shortest paths

- If v is (not) in the $s - t$ shortest path, $s_{G^v}(s, t) - s_G(s, t) > (=) 0$

 \Rightarrow Same notion as (traditional) betweenness centrality c_{Be}

Proposition 3

For any vertex $v \in V$ in any two graphs $G, H \in G_{(V, E)}$, then

$$|c_{SBe}^G(v) - c_{SBe}^H(v)| \leq 2N_v^2 d_{(V, E)}(G, H)$$

i.e., stable betweenness centrality c_{SBe} is a stable measure
Centrality ranking variation in random graphs

- \(G_{n,p} \) graphs with \(p = 10/n \) and weights \(U(0.5, 1.5) \)
 - Vary \(n \) from 10 to 200
 - Perturb multiplying weights with random numbers \(U(0.99, 1.01) \)

- Compare centrality rankings in the original and perturbed graphs

- Betweenness centrality presents larger maximum and average changes
Centrality ranking variation in random graphs

- Compute probability of observing a ranking change ≥ 5
 \Rightarrow Plot the histogram giving rise to the empirical probabilities

- For c_{Be} some node varies its ranking by 5 positions with high probability

- Long tail in histogram is evidence of instability
 \Rightarrow Minor perturbation generates change of 19 positions
Centrality ranking variation in an airport graph

- Real-world graph based on the air traffic between popular U.S. airports
 - Nodes are $N_v = 25$ popular airports
 - Edge weights are the number of yearly passengers between them

- Betweenness centrality still presents the largest variations
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
The problem of ranking websites

- Search engines rank pages by looking at the Web itself
 ⇒ Enough information intrinsic to the Web and its structure

- Information retrieval is a historically difficult problem
 ⇒ Keywords vs complex information needs (synonymy, polysemy)

- Beyond explosion in scale, unique issues arose with the Web
 - Diversity of authoring styles, people issuing queries
 - Dynamic and constantly changing content
 - Paradigm: from scarcity to abundance

- Finding and indexing documents that are relevant is ‘easy’
- Q: Which few of these should the engine recommend?
 ⇒ Key is understanding Web structure, i.e., link analysis
Voting by in-links

Ex: Suppose we issue the query ‘newspapers’

- First, use text-only information retrieval to identify relevant pages

- **Idea:** Links suggest implicit endorsements of other relevant pages
 - Count in-links to assess the authority of a page on ‘newspapers’
A list-finding technique

- Query also returns pages that compile lists of relevant resources
 - These hubs voted for many highly endorsed (authoritative) pages

- **Idea:** Good lists have a better sense of where the good results are
 - Page's **hub** value is the **sum of votes received by its linked pages**
Repeated improvement

- Reasonable to weight more the votes of pages scoring well as lists
 ⇒ Recompute votes summing linking page values as lists

Q: Why stop here? Use also improved votes to refine the list scores
⇒ Principle of repeated improvement
Hubs and authorities

- Relevant pages fall in two categories: hubs and authorities
- **Authorities** are pages with useful, relevant content
 - Newspaper home pages
 - Course home pages
 - Auto manufacturer home pages
- **Hubs** are ‘expert’ lists pointing to multiple authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers
- **Rules:** Authorities and hubs have a mutual reinforcement relationship
 - ⇒ A good hub links to multiple good authorities
 - ⇒ A good authority is linked from multiple good hubs
Hubs and authorities ranking algorithm

- Hyperlink-Induced Topic Search (HITS) algorithm [Kleinberg'98]

- Each page $v \in V$ has a hub score h_v and authority score a_v
 \[\Rightarrow \text{Network-wide vectors } h = [h_1, \ldots, h_{N_v}]^\top, \ a = [a_1, \ldots, a_{N_v}]^\top \]

 Authority update rule:
 \[
 a_v(k) = \sum_{(u,v) \in E} h_u(k-1), \text{ for all } v \in V \Leftrightarrow a(k) = A^\top h(k-1)
 \]

 Hub update rule:
 \[
 h_v(k) = \sum_{(v,u) \in E} a_u(k), \text{ for all } v \in V \Leftrightarrow h(k) = Aa(k)
 \]

- Initialize $h(0) = 1/\sqrt{N_v}$, normalize $a(k)$ and $h(k)$ each iteration
Limiting values

Define the hub and authority rankings as

\[a := \lim_{k \to \infty} a(k), \quad h := \lim_{k \to \infty} h(k) \]

From the HITS update rules one finds for \(k = 0, 1, \ldots \)

\[a(k + 1) = \frac{A^\top A a(k)}{\|A^\top A a(k)\|}, \quad h(k + 1) = \frac{A A^\top h(k)}{\|A A^\top h(k)\|} \]

Power iterations converge to dominant eigenvectors of \(A^\top A \) and \(A A^\top \)

\[A^\top A a = \alpha_a^{-1} a, \quad A A^\top h = \alpha_h^{-1} h \]

\(\Rightarrow \) Hub and authority ranks are eigenvector centrality measures
Ex: link analysis of citations among US Supreme Court opinions

- Rise and fall of authority of key Fifth Amendment cases [Fowler-Jeon’08]
Node rankings to measure website relevance, social influence

Key idea: in-links as votes, but ‘not all links are created equal’

⇒ How many links point to a node (outgoing links irrelevant)
⇒ How important are the links that point to a node

PageRank key to Google’s original ranking algorithm [Page-Brin’98]

Intuition 1: fluid that percolates through the network
⇒ Eventually accumulates at most relevant Web pages

Intuition 2: random web surfer (more soon)
⇒ In the long-run, relevant Web pages visited more often

PageRank and HITS success was quite different after 1998
Basic PageRank update rule

- Each page $v \in V$ has PageRank r_v, let $r = [r_1, \ldots, r_N]^{\top}$
 \Rightarrow Define $P := (D_{\text{out}})^{-1} A$, where D_{out} is the out-degree matrix

PageRank update rule:

$$r_v(k) = \sum_{(u,v) \in E} \frac{r_u(k-1)}{d_{ou}^u}, \text{ for all } v \in V \iff r(k) = P^T r(k-1)$$

- Split current PageRank evenly among outgoing links and pass it on
 \Rightarrow New PageRank is the total fluid collected in the incoming links
 \Rightarrow Initialize $r(0) = 1/N_v$. Flow conserved, no normalization needed

- Problem: ‘Spider traps’
 - Accumulate all PageRank
 - Only when not strongly connected
Apply the basic PageRank rule and scale the result by $s \in (0, 1)$
Split the leftover $(1 - s)$ evenly among all nodes (evaporation-rain)

Scaled PageRank update rule:

$$r_v(k) = s \times \sum_{(u,v) \in E} \frac{r_u(k - 1)}{d_u^{out}} + \frac{1 - s}{N_v}$$
for all $v \in V$

Can view as basic update $r(k) = \tilde{P}^T r(k - 1)$ with

$$\tilde{P} := sP + (1 - s) \frac{11^\top}{N_v}$$

⇒ Scaling factor s typically chosen between 0.8 and 0.9
⇒ Power iteration converges to the dominant eigenvector of \tilde{P}^T
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Markov chains

- Consider discrete-time index \(n = 0, 1, 2, \ldots \)

- Time-dependent random state \(X_n \) takes values on a countable set
 - In general denote states as \(i = 0, 1, 2, \ldots \), i.e., here the state space is \(\mathbb{N} \)
 - If \(X_n = i \) we say “the process is in state \(i \) at time \(n \)”

- Random process is \(X_{\mathbb{N}} \), its history up to \(n \) is \(X_n = [X_n, X_{n-1}, \ldots, X_0]^T \)

- Def: process \(X_{\mathbb{N}} \) is a Markov chain (MC) if for all \(n \geq 1, i, j, x \in \mathbb{N}^n \)
 \[
P (X_{n+1} = j \mid X_n = i, X_{n-1} = x) = P (X_{n+1} = j \mid X_n = i) = P_{ij}
 \]

- Future depends only on current state \(X_n \) (memoryless, Markov property)
 \(\Rightarrow \) Future conditionally independent of the past, given the present
Group the P_{ij} in a transition probability “matrix” P

$$P = \begin{pmatrix}
P_{00} & P_{01} & P_{02} & \cdots & P_{0j} & \cdots \\
P_{10} & P_{11} & P_{12} & \cdots & P_{1j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
P_{i0} & P_{i1} & P_{i2} & \cdots & P_{ij} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
\end{pmatrix}$$

⇒ Not really a matrix if number of states is infinite

⇒ Row-wise sums should be equal to one, i.e., $\sum_{j=0}^{\infty} P_{ij} = 1$ for all i
A graph representation or state transition diagram is also used.

- Useful when number of states is infinite, skip arrows if $P_{ij} = 0$
- Again, sum of per-state **outgoing** arrow weights should be one
Example: Bipolar mood

- I can be happy ($X_n = 0$) or sad ($X_n = 1$)
 \[\Rightarrow \text{My mood tomorrow is only affected by my mood today} \]

- Model as Markov chain with transition probabilities

\[
P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}
\]

- Inertia \[\Rightarrow \] happy or sad today, likely to stay happy or sad tomorrow
- But when sad, a little less likely so ($P_{00} > P_{11}$)
Example: Random (drunkard’s) walk

- Step to the right w.p. p, to the left w.p. $1 - p$
 - Not that drunk to stay on the same place

States are $0, \pm 1, \pm 2, \ldots$ (state space is \mathbb{Z}), infinite number of states

Transition probabilities are

$$P_{i,i+1} = p, \quad P_{i,i-1} = 1 - p$$

- $P_{ij} = 0$ for all other transitions
Q: What can be said about multiple transitions?

- Probabilities of X_{m+n} given X_m ⇒ n-step transition probabilities
 \[P^n_{ij} = P(X_{m+n} = j \mid X_m = i) \]

⇒ Define the matrix $P^{(n)}$ with elements P^n_{ij}

Theorem

The matrix of n-step transition probabilities $P^{(n)}$ is given by the n-th power of the transition probability matrix P, i.e.,

\[P^{(n)} = P^n \]

Henceforth we write P^n
Unconditional probabilities

- All probabilities so far are conditional, i.e., \(P_{ij}^n = P(X_n = j \mid X_0 = i) \)
 - ⇒ May want unconditional probabilities \(p_j(n) = P(X_n = j) \)

- Requires specification of initial conditions \(p_i(0) = P(X_0 = i) \)

- Using law of total probability and definitions of \(P_{ij}^n \) and \(p_j(n) \)
 \[
 p_j(n) = P(X_n = j) = \sum_{i=0}^{\infty} P(X_n = j \mid X_0 = i) \cdot P(X_0 = i) \\
 = \sum_{i=0}^{\infty} P_{ij}^n p_i(0)
 \]

- In matrix form (define vector \(\mathbf{p}(n) = [p_1(n), p_2(n), \ldots]^T \))
 \[
 \mathbf{p}(n) = (\mathbf{P}^n)^T \mathbf{p}(0)
 \]
Limiting distributions

- MCs have one-step memory. Eventually they forget initial state
- **Q:** What can we say about probabilities for large n?

$$\pi_j := \lim_{n \to \infty} P(X_n = j \mid X_0 = i) = \lim_{n \to \infty} P^n_{ij}$$

⇒ Assumed that limit is independent of initial state $X_0 = i$

- We’ve seen that this problem is related to the matrix power P^n

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}, \quad P^7 = \begin{pmatrix} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{pmatrix}$$

$$P^2 = \begin{pmatrix} 0.7 & 0.3 \\ 0.45 & 0.55 \end{pmatrix}, \quad P^{30} = \begin{pmatrix} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{pmatrix}$$

- Matrix product converges ⇒ probs. independent of time (large n)
- All rows are equal ⇒ probs. independent of initial condition
Theorem

For an ergodic (i.e. irreducible, aperiodic, and positive recurrent) MC, \(\lim_{n \to \infty} P^n_{ij} \) exists and is independent of the initial state \(i \), i.e.,

\[
\pi_j = \lim_{n \to \infty} P^n_{ij}
\]

Furthermore, steady-state probabilities \(\pi_j \geq 0 \) are the unique nonnegative solution of the system of linear equations

\[
\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad \sum_{j=0}^{\infty} \pi_j = 1
\]

- Limit probs. independent of initial condition exist for ergodic MC

\[\Rightarrow\] Simple algebraic equations can be solved to find \(\pi_j \)
Markov chains meet eigenvalue problems

- Define vector steady-state distribution \(\pi := [\pi_0, \pi_1, \ldots, \pi_J]^T \)

- Limit distribution is unique solution of
 \[
 \pi = P^T \pi, \quad \pi^T 1 = 1
 \]

- Eigenvector \(\pi \) associated with eigenvalue 1 of \(P^T \)
 - Eigenvectors are defined up to a scaling factor
 - Normalize to sum 1

- All other eigenvalues of \(P^T \) have modulus smaller than 1

- Computing \(\pi \) as eigenvector is computationally efficient
Ergodicity

- **Def:** Fraction of time $T_i^{(n)}$ spent in i-th state by time n is

$$T_i^{(n)} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{1} \{X_m = i\}$$

- Compute expected value of $T_i^{(n)}$

$$\mathbb{E} \left[T_i^{(n)} \right] = \frac{1}{n} \sum_{m=1}^{n} \mathbb{E} \left[\mathbb{1} \{X_m = i\} \right] = \frac{1}{n} \sum_{m=1}^{n} P (X_m = i)$$

- As $n \to \infty$, probabilities $P (X_m = i) \to \pi_i$ (ergodic MC). Then

$$\lim_{n \to \infty} \mathbb{E} \left[T_i^{(n)} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P (X_m = i) = \pi_i$$

- For ergodic MCs same is true without expected value \Rightarrow Ergodicity

$$\lim_{n \to \infty} T_i^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{1} \{X_m = i\} = \pi_i, \quad \text{a.s.}$$
Consider an ergodic Markov chain with transition probability matrix

\[
P := \begin{pmatrix}
0 & 0.3 & 0.7 \\
0.1 & 0.5 & 0.4 \\
0.1 & 0.2 & 0.7
\end{pmatrix}
\]

Visits to states, \(nT_i^{(n)} \)

Ergodic averages, \(T_i^{(n)} \)

Ergodic averages slowly converge to \(\pi = [0.09, 0.29, 0.61]^T \)
PageRank: Random walk formulation

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Preliminary definitions

- **Graph** $G = (V, E)$ ⇒ vertices $V = \{1, 2, \ldots, J\}$ and edges E

 ![Graph Diagram]

 - **Outgoing neighborhood of** i **is the set of nodes** j **to which** i **points**

 $$n(i) := \{j : (i, j) \in E\}$$

 - **Incoming neighborhood of** i **is the set of nodes that point to** i:

 $$n^{-1}(i) := \{j : (j, i) \in E\}$$

 - **Strongly connected** G ⇒ directed path joining any pair of nodes
Definition of rank

- Agent A chooses node i, e.g., web page, at random for initial visit
- Next visit randomly chosen between links in the neighborhood $n(i)$
 - All neighbors chosen with equal probability
- If reach a dead end because node i has no neighbors
 - Chose next visit at random equiprobably among all nodes
- Redefine graph $\mathcal{G} = (V, E)$ adding edges from dead ends to all nodes
 - Restrict attention to connected (modified) graphs

- Rank of node i is the average number of visits of agent A to i
Equiprobable random walk

- Formally, let A_n be the node visited at time n
- Define transition probability P_{ij} from node i into node j
 \[
P_{ij} := P \left(A_{n+1} = j \mid A_n = i \right)
\]

- Next visit equiprobable among i’s $N_i := |n(i)|$ neighbors
 \[
P_{ij} = \frac{1}{|n(i)|} = \frac{1}{N_i}, \quad \text{for all } j \in n(i)
\]

- Still have a graph
- But also a MC
- Red (not blue) circles
Formal definition of rank

▶ **Def:** Rank r_i of i-th node is the time average of number of visits

$$ r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \{ A_m = i \} $$

⇒ Define vector of ranks $r := [r_1, r_2, \ldots, r_J]^T$

▶ Rank r_i can be approximated by average r_{ni} at time n

$$ r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \{ A_m = i \} $$

⇒ Since $\lim_{n \to \infty} r_{ni} = r_i$, it holds $r_{ni} \approx r_i$ for n sufficiently large

⇒ Define vector of approximate ranks $r_n := [r_{n1}, r_{n2}, \ldots, r_{nJ}]^T$

▶ If modified graph is connected, rank independent of initial visit
Output: Vector $\mathbf{r}(i)$ with ranking of node i

Input: Scalar n indicating maximum number of iterations

Input: Vector $\mathbf{N}(i)$ containing number of neighbors of i

Input: Matrix $\mathbf{N}(i, j)$ containing indices j of neighbors of i

$m = 1; \mathbf{r} = \text{zeros}(J,1)$; % Initialize time and ranks

$A_0 = \text{random('unid',}J)$; % Draw first visit uniformly at random

\begin{verbatim}
while $m < n$ do
 jump = random('unid', $\mathbf{N}(A_{m-1})$); % Neighbor uniformly at random
 $A_m = \mathbf{N}(A_{m-1}, \text{jump})$; % Jump to selected neighbor
 $\mathbf{r}(A_m) = \mathbf{r}(A_m) + 1$; % Update ranking for A_m
 $m = m + 1$;
end

$\mathbf{r} = \mathbf{r}/n$; % Normalize by number of iterations n
\end{verbatim}
Social graph example

- Asked probability students about homework collaboration
- Created (crude) graph of the social network of students in the class
 ⇒ Used ranking algorithm to understand connectedness

 Ex: I want to know how well students are coping with the class
 ⇒ Best to ask people with higher connectivity ranking

- 2009 data from “UPenn’s ECE440”
Convergence metrics

- Recall \mathbf{r} is vector of ranks and \mathbf{r}_n of rank iterates.

- By definition $\lim_{n \to \infty} \mathbf{r}_n = \mathbf{r}$. How fast \mathbf{r}_n converges to \mathbf{r} (\mathbf{r} given)?

- Can measure by ℓ_2 distance between \mathbf{r} and \mathbf{r}_n:

$$
\zeta_n := \| \mathbf{r} - \mathbf{r}_n \|_2 = \left(\sum_{i=1}^{J} (r_{ni} - r_i)^2 \right)^{1/2}
$$

- If interest is only on highest ranked nodes, e.g., a web search:
 - Denote $r^{(i)}$ as the index of the i-th highest ranked node.
 - Let $r_n^{(i)}$ be the index of the i-th highest ranked node at time n.

- First element wrongly ranked at time n:

$$
\xi_n := \arg\min_i \{ r^{(i)} \neq r_n^{(i)} \}
$$
Evaluation of convergence metrics

Distance

- Distance close to 10^{-2} in $\approx 5 \times 10^3$ iterations
- **Bad:** Two highest ranks in $\approx 4 \times 10^3$ iterations
- **Awful:** Six best ranks in $\approx 8 \times 10^3$ iterations
- **(Very)** slow convergence
When does this algorithm converge?

- Cannot confidently claim convergence until 10^5 iterations
 - Beyond particular case, slow convergence inherent to algorithm

Example has 40 nodes, want to use in network with 10^9 nodes!
 - Leverage properties of MCs to obtain a faster algorithm
PageRank: Fast algorithms

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Limit probabilities

- Recall definition of rank $r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\{A_m = i\}$

- Rank is time average of number of state visits in a MC
 - Can be as well obtained from limiting probabilities

- Recall transition probabilities $P_{ij} = \frac{1}{N_i}$, for all $j \in n(i)$

- Stationary distribution $\pi = [\pi_1, \pi_1, \ldots, \pi_J]^T$ solution of

\[
\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i
\]

 - Plus normalization equation $\sum_{i=1}^{J} \pi_i = 1$

- As per ergodicity of MC (strongly connected G) $\Rightarrow r = \pi$
As always, can define matrix P with elements P_{ij}

$$
\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^{J} P_{ji} \pi_j \quad \text{for all } i
$$

Right hand side is just definition of a matrix product leading to

$$
\pi = P^T \pi, \quad \pi^T 1 = 1
$$

⇒ Also added normalization equation

Idea: solve system of linear equations or eigenvalue problem on P^T

⇒ Requires matrix P available at a central location

⇒ **Computationally costly** (sparse matrix P with 10^{18} entries)
What are limit probabilities?

- Let $p_i(n)$ denote probability of agent A visiting node i at time n

 $$p_i(n) := P(A_n = i)$$

- Probabilities at time $n + 1$ and n can be related

 $$P(A_{n+1} = i) = \sum_{j \in n^{-1}(i)} P(A_{n+1} = i \mid A_n = j) P(A_n = j)$$

- Which is, of course, probability propagation in a MC

 $$p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n)$$

- By definition limit probabilities are (let $\mathbf{p}(n) = [p_1(n), \ldots, p_J(n)]^T$)

 $$\lim_{n \to \infty} \mathbf{p}(n) = \pi = \mathbf{r}$$

 ⇒ Compute ranks from limit of propagated probabilities
Probability propagation

- Can also write probability propagation in matrix form

\[p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j=1}^{J} P_{ji}p_j(n) \quad \text{for all } i \]

- Right hand side is just definition of a matrix product leading to

\[p(n + 1) = P^T p(n) \]

- Idea: can approximate rank by large \(n \) probability distribution

\[\Rightarrow r = \lim_{n \to \infty} p(n) \approx p(n) \text{ for } n \text{ sufficiently large} \]
Algorithm is just a recursive matrix product, a power iteration

- **Output**: Vector $r(i)$ with ranking of node i
- **Input**: Scalar n indicating maximum number of iterations
- **Input**: Matrix P containing transition probabilities

$m = 1$; % Initialize time
$r=(1/J)\text{ones}(J,1)$; % Initial distribution uniform across all nodes

while $m < n$ do
 \[r = P^T r; \] % Probability propagation
 \[m = m + 1; \]
end
Interpretation of probability propagation

- **Q:** Why does the random walk converge so slow?
- **A:** Need to register a large number of agent visits to every state
 - *Ex:* 40 nodes, say 100 visits to each \(\Rightarrow 4 \times 10^3 \) iters.

- **Smart idea:** Unleash a large number of agents \(K \)

\[
 r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \{A_{km} = i\}
\]

- Visits are now spread over **time and space**
 - \(\Rightarrow \) Converges “\(K \) times faster”
 - \(\Rightarrow \) But haven’t changed computational cost
Q: What happens if we unleash infinite number of agents K?

\[r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} I \{ A_{km} = i \} \]

Using law of large numbers and expected value of indicator function

\[r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{E} \left[I \{ A_m = i \} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P (A_m = i) \]

Graph walk is an ergodic MC, then \(\lim_{m \to \infty} P (A_m = i) \) exists, and

\[r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} p_i(m) = \lim_{n \to \infty} p_i(n) \]

⇒ Probability propagation \(\approx \) Unleashing infinitely many agents
Distance to rank

- Initialize with uniform probability distribution \(p(0) = (1/J)1 \)

\(\Rightarrow \) Plot distance between \(p(n) \) and \(r \)

- Distance is \(10^{-2} \) in \(\approx 30 \) iters., \(10^{-4} \) in \(\approx 140 \) iters.

\(\Rightarrow \) Convergence two orders of magnitude faster than random walk
Number of nodes correctly ranked

- Rank of highest ranked node that is wrongly ranked by time \(n \)

- Not bad: All nodes correctly ranked in 120 iterations
- Good: Ten best ranks in 70 iterations
- Great: Four best ranks in 20 iterations
Distributed algorithm to compute ranks

- Nodes want to compute their rank r_i
 - Can **communicate with neighbors** only (incoming + outgoing)
 - Access to **neighborhood information** only

- Recall probability update

$$ p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j}p_j(n) $$

 - Uses local information only

- Distributed algorithm. Nodes keep local rank estimates $r_i(n)$
 - Receive rank (probability) estimates $r_j(n)$ from neighbors $j \in n^{-1}(i)$
 - Update local rank estimate $r_i(n + 1) = \sum_{j \in n^{-1}(i)} r_j(n)/N_j$
 - Communicate rank estimate $r_i(n + 1)$ to outgoing neighbors $j \in n(i)$

- Only need to know the number of neighbors of my neighbors
Distributed implementation of random walk

- Can communicate with neighbors only (incoming + outgoing)
 - But cannot access neighborhood information
 - Pass agent (‘hot potato’) around

- Local rank estimates $r_i(n)$ and counter with number of visits V_i

- Algorithm run by node i at time n

  ```
  if Agent received from neighbor then
    $V_i = V_i + 1$
    Choose random neighbor
    Send agent to chosen neighbor
  end
  
  $n = n + 1; \ r_i(n) = V_i/n;$
  ```

- Speed up convergence by generating many agents to pass around
Comparison of different algorithms

- **Random walk (RW) implementation**
 - Most secure. No information shared with other nodes
 - Implementation can be distributed
 - Convergence exceedingly slow

- **System of linear equations**
 - Least security. Graph in central server
 - Distributed implementation not clear
 - Convergence not an issue
 - But computationally costly to obtain approximate solutions

- **Probability propagation**
 - Somewhat secure. Information shared with neighbors only
 - Implementation can be distributed
 - Convergence rate acceptable (orders of magnitude faster than RW)
Glossary

- Centrality measure
- Closeness centrality
- Dijkstra’s algorithm
- Betweenness centrality
- Information controller
- Eigenvector centrality
- Perron’s Theorem
- Power method
- Information retrieval
- Link analysis
- Repeated improvement

- Hubs and authorities
- HITS algorithm
- PageRank
- Spider traps
- Scaled PageRank updates
- Ergodic Markov chain
- Limiting probabilities
- Random walk on a graph
- Long-run fraction of state visits
- Probability propagation
- Distributed algorithm