Statistical Inference Review

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

January 24, 2019
Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
- **Probability theory** is a formalism to work with uncertainty
 - Given a data-generating process, what are properties of outcomes?

- **Statistical inference** deals with the inverse problem
 - Given outcomes, what can we say on the data-generating process?
Statistical inference refers to the process whereby

Given observations \(\mathbf{x} = [x_1, \ldots, x_n]^T \) from \(X_1, \ldots, X_n \sim F \)

We aim to extract information about the distribution \(F \)

- **Ex:** Infer a feature of \(F \) such as its mean
- **Ex:** Infer the CDF \(F \) itself, or the PDF \(f = F' \)

Often observations are of the form \((y_i, x_i), i = 1, \ldots, n\)

\(Y \) is the response or outcome. \(X \) is the predictor or feature

- **Q:** Relationship between the random variables (RVs) \(Y \) and \(X \)?
- **Ex:** Learn \(\mathbb{E}[Y \mid X = x] \) as a function of \(x \)
- **Ex:** Foretelling a yet-to-be observed value \(y_* \) from the input \(X_* = x_* \)
A statistical model specifies a set \mathcal{F} of CDFs to which F may belong.

A common parametric model is of the form $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$

- Parameter(s) θ are unknown, take values in parameter space Θ
- Space Θ has $\text{dim}(\Theta) < \infty$, not growing with the sample size n.

Ex: Data come from a Gaussian distribution

$$\mathcal{F}_N = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \mu \in \mathbb{R}, \sigma > 0 \right\}$$

\Rightarrow A two-parameter model: $\theta = [\mu, \sigma]^T$ and $\Theta = \mathbb{R} \times \mathbb{R}_+$

A nonparametric model has $\text{dim}(\Theta) = \infty$, or $\text{dim}(\Theta)$ grows with n.

Ex: $\mathcal{F}_{\text{All}} = \{\text{All CDFs } F\}$
Given independent data $\mathbf{x} = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$.

 ⇒ Statistical inference often conducted in the context of a model.

Ex: One-dimensional parametric estimation
- Suppose observations are Bernoulli distributed with parameter p.
- The task is to estimate the parameter p (i.e., the mean).

Ex: Two-dimensional parametric estimation
- Suppose the PDF $f \in \mathcal{F}_N$, i.e., data are Gaussian distributed.
- The problem is to estimate the parameters μ and σ.
- May only care about μ, and treat σ as a nuisance parameter.

Ex: Nonparametric estimation of the CDF
- The goal is to estimate F assuming only $F \in \mathcal{F}_{All} = \{\text{All CDFs } F\}$.
Regression models

- Suppose observations are from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)
 ⇒ Goal is to learn the relationship between the RVs \(Y\) and \(X\)

- A typical approach is to model the regression function
 \[
 r(x) := \mathbb{E}[Y \mid X = x] = \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) dy
 \]
 ⇒ Equivalent to the regression model \(Y = r(X) + \epsilon, \mathbb{E}[\epsilon] = 0\)

- Ex: Parametric linear regression model
 \[
 r \in \mathcal{F}_{Lin} = \{r : r(x) = \beta_0 + \beta_1 x\}
 \]

- Ex: Nonparametric regression model, assuming only smoothness
 \[
 r \in \mathcal{F}_{Sob} = \left\{ r : \int_{-\infty}^{\infty} (r''(x))^2 dx < \infty \right\}
 \]
Regression, prediction and classification

- Given data \((y_1, x_1), \ldots, (y_n, x_n)\) from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)
 - Ex: \(x_i\) is the blood pressure of subject \(i\), \(y_i\) how long she lived

- Model the relationship between \(Y\) and \(X\) via \(r(x) = \mathbb{E}[Y \mid X = x]\)
 - \(\Rightarrow Q:\) What are classical inference tasks in this context?

Ex: Regression or curve fitting
 - The problem is to estimate the regression function \(r \in \mathcal{F}\)

Ex: Prediction
 - The goal is to predict \(Y_*\) for a new patient based on their \(X_* = x_*\)
 - If a regression estimate \(\hat{r}\) is available, can do \(y_* := \hat{r}(x_*)\)

Ex: Classification
 - Suppose RVs \(Y_i\) are discrete, e.g. live or die encoded as \(\pm 1\)
 - The prediction problem above is termed classification
Fundamental concepts in inference

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Point estimators

- **Point estimation** refers to making a single “best guess” about F

- **Ex**: Estimate the parameter β in a linear regression model

 $$\mathcal{F}_{Lin} = \left\{ r : r(x) = \beta^T x \right\}$$

- **Def**: Given data $x = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$, a **point estimator** $\hat{\theta}$ of a parameter θ is some function

 $$\hat{\theta} = g(X_1, \ldots, X_n)$$

 - The estimator $\hat{\theta}$ is computed from the data, hence it is a RV
 - The distribution of $\hat{\theta}$ is called **sampling distribution**

- The **estimate** is the specific value for the given data sample x

 - May write $\hat{\theta}_n$ to make explicit reference to the sample size
Def: The bias of an estimator $\hat{\theta}$ is given by $\text{bias}(\hat{\theta}) := \mathbb{E}[\hat{\theta}] - \theta$

Def: The standard error is the standard deviation of $\hat{\theta}$

$$\text{se} = \text{se}(\hat{\theta}) := \sqrt{\text{var}[\hat{\theta}]}$$

⇒ Often, se depends on the unknown F. Can form an estimate $\hat{\text{se}}$

Def: The mean squared error (MSE) is a measure of quality of $\hat{\theta}$

$$\text{MSE} = \mathbb{E}[(\hat{\theta} - \theta)^2]$$

Expected values are with respect to the data distribution

$$f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
The bias-variance decomposition of the MSE

Theorem

The MSE \(\text{MSE} = \mathbb{E} [(\hat{\theta} - \theta)^2] \) can be written as

\[
\text{MSE} = \text{bias}^2(\hat{\theta}) + \text{var} [\hat{\theta}]
\]

Proof.

- Let \(\bar{\theta} = \mathbb{E} [\hat{\theta}] \). Then

\[
\mathbb{E} [(\hat{\theta} - \theta)^2] = \mathbb{E} [(\hat{\theta} - \bar{\theta} + \bar{\theta} - \theta)^2]
\]

\[
= \mathbb{E} [(\hat{\theta} - \bar{\theta})^2] + 2(\bar{\theta} - \theta)\mathbb{E} [\hat{\theta} - \bar{\theta}] + (\bar{\theta} - \theta)^2
\]

\[
= \text{var} [\hat{\theta}] + \text{bias}^2(\hat{\theta})
\]

- The last equality follows since \(\mathbb{E} [\hat{\theta} - \bar{\theta}] = \mathbb{E} [\hat{\theta}] - \bar{\theta} = 0 \)
Desirable properties of point estimators

- **Q:** Desiderata for an estimator $\hat{\theta}$ of the parameter θ?

- **Def:** An estimator is **unbiased** if $\text{bias}(\hat{\theta}) = 0$, i.e., if $\mathbb{E}[\hat{\theta}] = \theta$

 \Rightarrow An unbiased estimator is “on target” on average

- **Def:** An estimator is **consistent** if $\hat{\theta}_n \xrightarrow{p} \theta$, i.e. for any $\epsilon > 0$

 $$\lim_{n \to \infty} P\left(|\hat{\theta}_n - \theta| < \epsilon \right) = 1$$

 \Rightarrow A consistent estimator converges to θ as we collect more data

- **Def:** An unbiased estimator is **asymptotically Normal** if

 $$\lim_{n \to \infty} P\left(\frac{\hat{\theta}_n - \theta}{\text{se}} \leq x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

 \Rightarrow Equivalently, for large enough sample size then $\hat{\theta}_n \sim \mathcal{N}(\theta, \text{se}^2)$
Ex: Consider tossing the same coin \(n \) times and record the outcomes

- Model observations as \(X_1, \ldots, X_n \sim \text{Ber}(p) \). Estimate of \(p \)?

- A natural choice is the sample mean estimator

\[
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

- Recall that for \(X \sim \text{Ber}(p) \), then \(\mathbb{E}[X] = p \) and \(\text{var}[X] = p(1 - p) \)

- The estimator \(\hat{p} \) is unbiased since

\[
\mathbb{E}[\hat{p}] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = p
\]

⇒ Also used that the expected value is a linear operator
The standard error is

\[se = \sqrt{\text{var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right]} = \sqrt{\frac{1}{n^2} \sum_{i=1}^{n} \text{var} [X_i]} = \sqrt{\frac{p(1-p)}{n}} \]

⇒ Unknown \(p \). Estimated standard error is \(\hat{se} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)

Since \(\hat{p}_n \) is unbiased, then \(\text{MSE} = E \left[(\hat{p}_n - p)^2 \right] = \frac{p(1-p)}{n} \to 0 \)

⇒ Thus \(\hat{p} \) converges in the mean square sense, hence also \(\hat{p}_n \xrightarrow{p} p \)

⇒ Establishes \(\hat{p} \) is a consistent estimator of the parameter \(p \)

⇒ Also, \(\hat{p} \) is asymptotically Normal by the Central Limit Theorem
Confidence intervals

- Set estimates specify regions of \(\Theta \) where \(\theta \) is likely to lie on

- **Def:** Given i.i.d. data \(X_1, \ldots, X_n \sim F \), a \(1 - \alpha \) confidence interval of a parameter \(\theta \) is an interval \(C_n = (a, b) \), where \(a = a(X_1, \ldots, X_n) \) and \(b = b(X_1, \ldots, X_n) \) are functions of the data such that

\[
P(\theta \in C_n) = 1 - \alpha, \quad \text{for all } \theta \in \Theta
\]

\(\Rightarrow \) In words, \(C_n = (a, b) \) traps \(\theta \) with probability \(1 - \alpha \)

\(\Rightarrow \) The interval \(C_n \) is computed from the data, hence it is random

- We call \(1 - \alpha \) the **coverage** of the confidence interval

- **Ex:** It is common to report 95% confidence intervals, i.e., \(\alpha = 0.05 \)
Aside on the standard Normal distribution

Let X be a standard Normal RV, i.e., $X \sim \mathcal{N}(0, 1)$ with CDF $\Phi(x)$

$$\Phi(x) = P(X \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} \, du$$

Define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$, i.e., the value such that

$$P(X > z_{\alpha/2}) = \alpha/2 \text{ and } P(-z_{\alpha/2} < X < z_{\alpha/2}) = 1 - \alpha$$
Normal-based confidence intervals

- Nice point estimators $\hat{\theta}_n$ are Normal as $n \to \infty$, i.e., $\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{se}^2)$
 \(\Rightarrow\) Useful property in constructing confidence intervals for θ

Theorem
Suppose that $\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{se}^2)$ as $n \to \infty$. Let Φ be the CDF of a standard Normal and define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$. Consider the interval

$$C_n = (\hat{\theta}_n - z_{\alpha/2}\hat{se}, \hat{\theta}_n + z_{\alpha/2}\hat{se}).$$

Then $P(\theta \in C_n) \to 1 - \alpha$, as $n \to \infty$

- These intervals only have approximately (large n) correct coverage
Proof.

Consider the normalized (centered and scaled) RV

\[X_n = \frac{\hat{\theta}_n - \theta}{\hat{\text{se}}} \]

By assumption, \(X_n \to X \sim \mathcal{N}(0, 1) \) as \(n \to \infty \). Hence,

\[
P(\theta \in C_n) = P\left(\hat{\theta}_n - z_{\alpha/2}\hat{\text{se}} < \theta < \hat{\theta}_n + z_{\alpha/2}\hat{\text{se}}\right) = P\left(-z_{\alpha/2} < \frac{\hat{\theta}_n - \theta}{\hat{\text{se}}} < z_{\alpha/2}\right)
\]

\[
\to P\left(-z_{\alpha/2} < X < z_{\alpha/2}\right) = 1 - \alpha
\]

The last equality follows by definition of \(z_{\alpha/2} \)
Ex: Given observations $X_1, \ldots, X_n \sim \text{Ber}(p)$. Estimate of p?

- We studied properties of the sample mean estimator

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- By the Central Limit Theorem, it follows that

$$\hat{p} \sim \mathcal{N} \left(p, \frac{\hat{p}(1 - \hat{p})}{n} \right) \text{ as } n \to \infty$$

- Therefore, an approximate $1 - \alpha$ confidence interval for p is

$$C_n = \left(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)$$
In hypothesis testing we start with some default theory

- **Ex:** The data come from a zero-mean Gaussian distribution

- **Q:** Do the data provide sufficient evidence to reject the theory?

The hypothesized theory is called **null hypothesis**, written as H_0

⇒ Specify also an **alternative hypothesis** to the null, H_1

Formally, given i.i.d. data $x = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$

1. Form a test statistic $T(x)$, i.e., a function of the data
2. Define a rejection region R of the form

$$R = \{ x : T(x) > c \}$$

- If data $x \in R$ we reject H_0, otherwise we retain (do not reject) H_0

The problem is to select the test statistic T and the **critical value** c
Testing if a coin is fair

Ex: Consider tossing the same coin \(n \) times and record the outcomes

- Model observations as \(X_1, \ldots, X_n \sim \text{Ber}(p) \). Is the coin fair?

- Let \(H_0 \) be the hypothesis that the coin is fair, and \(H_1 \) the alternative

 \[H_0 : p = 1/2 \quad \text{versus} \quad H_1 : p \neq 1/2 \]

- Consider the **test statistic** given by

 \[
 T(X_1, \ldots, X_n) = \left| \hat{p}_n - \frac{1}{2} \right| = \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{2} \right|
 \]

- It seems reasonable to reject \(H_0 \) if \((X_1, \ldots, X_n) \in \mathcal{R} \), where

 \[
 \mathcal{R} = \{(X_1, \ldots, X_n) : T(X_1, \ldots, X_n) > c\}
 \]

- Will soon see this is a Wald’s test, hence \(c = z_{\alpha/2} \hat{se} \). More later
Tutorial on inference about a mean

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Inference about a mean

- Consider a sample of n i.i.d. observations $X_1, \ldots, X_n \sim F$
- **Q:** How can we perform inference about the mean $\mu = \mathbb{E}[X_1]$?
 - Practical and canonical problem in statistical inference

- A natural estimator of μ is the **sample mean estimator**

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- Well motivated since by the **strong law of large numbers**

$$\lim_{n \to \infty} \hat{\mu}_n = \mu \quad \text{almost surely}$$

- It is a simple example of a **method of moments estimator (MME)**
- ... and also a **maximum likelihood estimator (MLE)**
Moments and sample moments

- In parametric inference we wish to estimate $\theta \in \Theta \subseteq \mathbb{R}^p$ in

$$\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$$

- For $1 \leq j \leq p$, define the j-th moment of $X \sim F$ as

$$\alpha_j \equiv \alpha_j(\theta) = \mathbb{E}[X^j] = \int_{-\infty}^{\infty} x^j f(x; \theta) dx$$

- Likewise, the j-th sample moment is an estimate of α_j, namely

$$\hat{\alpha}_j = \frac{1}{n} \sum_{i=1}^{n} X_i^j$$

\Rightarrow The j-th moment $\alpha_j(\theta)$ depends on the unknown θ

\Rightarrow But $\hat{\alpha}_j$ does not, a function of the data only
A first method for parametric estimation is the method of moments. MMEs are not optimal, yet typically easy to compute.

Def: The method of moments estimator (MME) $\hat{\theta}_n$ is the solution to

\[
\begin{align*}
\alpha_1(\hat{\theta}_n) &= \hat{\alpha}_1 \\
\alpha_2(\hat{\theta}_n) &= \hat{\alpha}_2 \\
\vdots &= \vdots \\
\alpha_p(\hat{\theta}_n) &= \hat{\alpha}_p
\end{align*}
\]

This is a system of p (nonlinear) equations with p unknowns.

Ex: Back to estimating a mean μ, $p = 1$ and $\mu = \theta = \alpha_1(\theta)$ so

\[
\hat{\mu}_n^{MM} = \hat{\alpha}_1 = \frac{1}{n} \sum_{i=1}^{n} X_i
\]
Example: Gaussian data model

Ex: Suppose now $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, i.e., the model is $F \in \mathcal{F}_N$

Q: What is the MME of the parameter vector $\theta = [\mu, \sigma^2]^T$?

The first $p = 2$ moments are given by

$$\alpha_1(\theta) = \mathbb{E}[X_1] = \mu, \quad \alpha_2(\theta) = \mathbb{E}[X_1^2] = \sigma^2 + \mu^2$$

The MME $\hat{\theta}_n$ is the solution to the following system of equations

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\sigma}^2_n + \hat{\mu}_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

The solution is

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}_n)^2$$
Maximum likelihood estimator

- Often “the” method for parametric estimation is **maximum likelihood**
- Consider i.i.d. data X_1, \ldots, X_n from a PDF $f(x; \theta)$
- The **likelihood function** $L_n(\theta) : \Theta \to \mathbb{R}_+$ is defined by

$$L_n(\theta) := \prod_{i=1}^{n} f(X_i; \theta)$$

⇒ $L_n(\theta)$ is the joint PDF of the data, treated as a function of θ
⇒ The **log-likelihood function** is $\ell_n(\theta) := \log L_n(\theta)$

- **Def:** The **maximum likelihood estimator (MLE)** $\hat{\theta}_n$ is given by

$$\hat{\theta}_n = \arg \max_{\theta} L_n(\theta)$$

- **Very useful:** The maximizer of $L_n(\theta)$ coincides with that of $\ell_n(\theta)$
Example: Bernoulli data model

- Suppose \(X_1, \ldots, X_n \sim \text{Ber}(p) \). MLE of \(\mu = p \)?

 \[\Rightarrow \text{The data PMF is } f(x; p) = p^x(1 - p)^{1-x}, \ x \in \{0, 1\} \]

- The likelihood function is (define \(S_n = \sum_{i=1}^n X_i \))

 \[\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i}(1 - p)^{1-X_i} = p^{S_n}(1 - p)^{n-S_n} \]

 \[\Rightarrow \text{The log-likelihood is } \ell_n(p) = S_n \log(p) + (n - S_n) \log(1 - p) \]

- The MLE \(\hat{p}_n \) is the solution to the equation

 \[\left. \frac{\partial \ell_n(p)}{\partial p} \right|_{p=\hat{p}_n} = \frac{S_n}{\hat{p}_n} - \frac{n - S_n}{1 - \hat{p}_n} = 0 \]

- The solution is

 \[\hat{\mu}_n^{ML} = \hat{p}_n = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i \]
Example: Gaussian data model

- Suppose $X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)$. MLE of μ?

 \Rightarrow The data PDF is $f(x; \mu) = \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{(x-\mu)^2}{2} \right\}$, $x \in \mathbb{R}$

- The likelihood function is (up to constants independent of μ)

 $$
 L_n(\mu) = \prod_{i=1}^{n} f(X_i; \mu) \propto \exp \left\{ -\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{2} \right\}
 $$

 \Rightarrow The log-likelihood is $\ell_n(\mu) \propto -\sum_{i=1}^{n} (X_i - \mu)^2$

- The MLE $\hat{\mu}_n$ is the solution to the equation

 $$
 \left. \frac{\partial \ell_n(\mu)}{\partial \mu} \right|_{\mu=\hat{\mu}_n} = 2 \sum_{i=1}^{n} (X_i - \hat{\mu}_n) = 0
 $$

- The solution is, once more, the sample mean estimator

 $$
 \hat{\mu}_n^{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i
 $$
Properties of the MLE

- MLEs have desirable properties under loose conditions on $f(x; \theta)$

1. **Consistency:** $\hat{\theta}_n \xrightarrow{P} \theta$ as the sample size n increases
2. **Equivariance:** If $\hat{\theta}_n$ is the MLE of θ, then $g(\hat{\theta}_n)$ is the MLE of $g(\theta)$
3. **Asymptotic Normality:** For large n, one has $\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{\text{se}}^2)$
4. **Efficiency:** For large n, $\hat{\theta}_n$ attains the Cramér-Rao lower bound

- Efficiency means no other unbiased estimator has smaller variance

- **Ex:** Can use the MLE to create a confidence interval for μ, i.e.,

$$C_n = (\hat{\mu}_n^{ML} - z_{\alpha/2} \hat{\text{se}}, \hat{\mu}_n^{ML} + z_{\alpha/2} \hat{\text{se}})$$

⇒ By asymptotic Normality, $P(\mu \in C_n) \approx 1 - \alpha$ for large n
⇒ For the $\mathcal{N}(\mu, 1)$ model, $\hat{\mu}_n^{ML} \pm \frac{z_{\alpha/2}}{\sqrt{n}}$ has exact coverage
The Wald test

Consider the following hypothesis test regarding the mean μ

\[H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu \neq \mu_0 \]

Let $\hat{\mu}_n$ be the sample mean, with estimated standard error $\hat{\text{se}}$

Def: Given $\alpha \in (0, 1)$, the Wald test rejects H_0 when

\[T(X_1, \ldots, X_n) := \left| \frac{\hat{\mu}_n - \mu_0}{\hat{\text{se}}} \right| > z_{\alpha/2} \]

If H_0 is true, $\frac{\hat{\mu}_n - \mu_0}{\hat{\text{se}}} \sim \mathcal{N}(0, 1)$ by the Central Limit Theorem

\Rightarrow Probability of incorrectly rejecting H_0 is no more than α

The value of α is called the **significance level** of the test
The \(p \)-value

- Reporting “reject \(H_0 \)” or “retain \(H_0 \)” is not too informative
 \(\Rightarrow \) Could ask, for each \(\alpha \), whether the test rejects at that level

- Let \(T_{\text{obs}} := T(x) \) be the test statistic value for the observed sample

![Diagram showing a normal distribution with critical values for \(p/2 \) and \(-T_{\text{obs}} \) and \(T_{\text{obs}} \).]

- The probability \(p := P_{H_0}(|T(X)| \geq T_{\text{obs}}) \) is called the \(p \)-value
 \(\Rightarrow \) Smallest level at which we would reject \(H_0 \)

- A small \(p \)-value (\(< 0.05\)) indicates reduced evidence supporting \(H_0 \)
Methods discussed so far are termed **frequentist**, where:

- **F1**: Probability refers to limiting relative frequencies
- **F2**: Parameters are fixed, unknown constants
- **F3**: Statistical procedures offer guarantees on long-run performance

Alternatively, **Bayesian inference** is based on these postulates:

- **B1**: Probability describes degree of belief, not limiting frequency
- **B2**: We can make probability statements about parameters
- **B3**: A probability distribution for θ is produced to make inferences

Controversial? Inherently embraces a subjective notion of probability

- Bayesian methods do not offer long-run performance guarantees
- Very useful to combine prior beliefs with data in a principled way
Bayesian inference is usually carried out in the following way:

Step 1: Choose a probability density \(f(\theta) \) called the *prior distribution*
- The prior expresses our beliefs about \(\theta \), before seeing any data.

Step 2: Choose a statistical model \(f(x \mid \theta) \) (compare with \(f(x; \theta) \))
- Reflects our beliefs about the data-generating process, i.e., \(X \) given \(\theta \).

Step 3: Given data \(X = [X_1, \ldots, X_n]^T \), we update our beliefs and calculate the *posterior distribution* \(f(\theta \mid X) \) using Bayes’ rule:

\[
f(\theta \mid X) \propto \prod_{i=1}^{n} f(X_i \mid \theta) f(\theta) = \mathcal{L}_n(\theta) f(\theta)
\]

\[\Rightarrow\] Point estimates, confidence intervals obtained from \(f(\theta \mid X) \)

Ex: A maximum a posteriori (MAP) estimator \(\hat{\theta}_n = \arg \max_{\theta} f(\theta \mid X) \)
Example: Gaussian data model and prior

- Consider $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Suppose σ^2 is known.
 - To estimate θ we adopt the prior $\theta \sim \mathcal{N}(a, b^2)$

- Using Bayes’ rule, can show the posterior is also Gaussian where

$$\hat{\theta}_{MAP}^n = \mathbb{E} [\theta \mid X] = \frac{w}{n} \sum_{i=1}^n X_i + (1 - w)a, \text{ with } w = \frac{se^{-2}}{se^{-2} + b^{-2}}$$

 - Weighted average of the sample mean $\hat{\theta}_{ML}^n$ and the prior mean a
 - Here, $se = \sigma/\sqrt{n}$ is the standard error for the sample mean

- Asymptotics: Note that $w \to 1$ as the sample size $n \to \infty$
 - For large n the posterior is approximately $\mathcal{N}(\hat{\theta}_{ML}^n, se^2)$
 - Same holds if n is fixed but $b \to \infty$, i.e., prior is uninformative
Tutorial on linear regression inference

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Linear regression

- Suppose observations are from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)
 \[\Rightarrow\text{Goal is to learn the relationship between the RVs } Y \text{ and } X\]
- A workhorse approach is to model the regression function
 \[r(x) = \mathbb{E}[Y \mid X = x] = \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) dy\]
- The simple linear regression model specifies that given \(X_i = x_i\)
 \[y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \ldots, n\]
 - The \(y_i\)'s are modeled as noisy samples of the line \(r(x) = \beta_0 + \beta_1 x\)
 - Errors \(\epsilon_i\) are i.i.d., with \(\mathbb{E}[\epsilon_i \mid X_i = x_i] = 0\) and \(\text{var}[\epsilon_i \mid X_i = x_i] = \sigma^2\)
- With the linear model, regression amounts to parametric inference
 \[\hat{r}(x) \Leftrightarrow [\hat{\beta}_0, \hat{\beta}_1]^T\]
Multiple linear regression

- More generally, suppose we observe data \((y_1, x_1), \ldots, (y_n, x_n)\).

 \[\Rightarrow \text{Each input } x_i = [x_{i1}, \ldots, x_{ip}]^T \text{ is a } p \times 1 \text{ feature vector} \]

- The multiple linear regression model specifies

 \[y_i = \sum_{j=1}^{p} x_{ij} \beta_j + \epsilon_i = \beta^T x_i + \epsilon_i, \quad i = 1, \ldots, n \]

 - Typically \(x_{i1} = 1\) for all \(i\), providing an intercept term
 - Errors \(\epsilon_i\) are i.i.d., with \(\mathbb{E}[\epsilon_i | X_i = x_i] = 0\) and \(\text{var}\left[\epsilon_i | X_i = x_i\right] = \sigma^2\)

- Can be compactly represented as \(y = X\beta + \epsilon\), defining

 \[
 y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}
 \]
A sound estimate $\hat{\beta}$ minimizes the residual sum of squares (RSS)

$$\text{RSS}(\beta) = \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 = \|y - X\beta\|^2$$

Residuals are the distances from y_i to hyperplane $r(x) = \beta^T x$

Def: The least-squares estimator (LSE) $\hat{\beta}_n$ is the solution to

$$\hat{\beta}_n = \arg\min_{\beta} \text{RSS}(\beta)$$

Carrying out the optimization yields the LSE $\hat{\beta}_n = (X^T X)^{-1} X^T y$

⇒ Only defined if $X^T X$ invertible ⇔ X has full column rank p
In least squares we seek the vector \(\hat{y} = X\hat{\beta} \in \text{span}(X) \) closest to \(y \)

\[
\hat{y} = X\hat{\beta}
\]

Solution: Orthogonal projection of \(y \) onto \(\text{span}(X) \), i.e., (let \(X = U\Sigma V^T \))

\[
\hat{y} = P_X(y) = X(X^TX)^{-1}X^Ty = UU^Ty
\]

The residual \(y - \hat{y} \) lies in the orthogonal complement \((\text{span}(X))^\perp \)

\(\Rightarrow \) This way \(\text{RSS}(\hat{\beta}) = \|y - \hat{y}\|^2 \) is minimum
Properties of the LSE

- LSE \(\hat{\beta}_n = (X^T X)^{-1} X^T y \) is a linear combination of the random \(y \)

P1) Unbiasedness: \(\mathbb{E} \left[\hat{\beta}_n \middle| X \right] = \beta \) with \(\text{var} \left[\hat{\beta}_n \middle| X \right] = \sigma^2 (X^T X)^{-1} \)

P2) Consistency: \(\hat{\beta}_n \xrightarrow{p} \beta \) as the sample size \(n \) increases

P3) Asymptotic Normality: For large \(n \), one has \(\hat{\beta}_n \sim \mathcal{N}(\beta, \sigma^2 (X^T X)^{-1}) \)

P4) If errors \(\epsilon \sim \mathcal{N}(0, \sigma^2 I) \), then \(\hat{\beta}_n \sim \mathcal{N}(\beta, \sigma^2 (X^T X)^{-1}) \) exactly; and

Efficiency: No other unbiased estimator of \(\beta \) has smaller variance

- Ex: Can use the LSE to create confidence intervals for each \(\beta_j \), i.e.,

\[
C_n = \left(\hat{\beta}_j - z_{\alpha/2} \hat{\sigma} \hat{\epsilon}(\hat{\beta}_j), \hat{\beta}_j + z_{\alpha/2} \hat{\sigma} \hat{\epsilon}(\hat{\beta}_j) \right)
\]

\(\Rightarrow \) By asymptotic (or exact) Normality, \(P(\beta_j \in C_n) \approx 1 - \alpha \)

\(\Rightarrow \) Note that \(\hat{\sigma} \hat{\epsilon}(\hat{\beta}_j) = \hat{\sigma} \sqrt{[(X^T X)^{-1}]_{jj}} \), where \(\hat{\sigma}^2 = \frac{\text{RSS}(\hat{\beta})}{n-p} \)
Hypothesis testing and prediction

Ex: Consider the hypothesis test regarding the parameter β_j

$$H_0 : \beta_j = \beta_j^{(0)} \quad \text{versus} \quad H_1 : \beta_j \neq \beta_j^{(0)}$$

By asymptotic (or exact) Normality of the LSE, an α-level test is

Reject H_0 if $T_j := \left| \frac{\hat{\beta}_j - \beta_j^{(0)}}{\text{se}(\hat{\beta}_j)} \right| > z_{\alpha/2}$

Ex: Can predict an unobserved value $Y_* = y_*$ from a given x_* via

$$y_* = x_*^T \hat{\beta}$$

May define a notion of standard error for y_*, and predictive intervals

\Rightarrow Should account for the variability in estimating β and in ϵ_*
The LSE as a MLE

- Suppose that conditioned on $X_i = x_i$, the errors ϵ_i are i.i.d. Normal
 \[f(\epsilon_i \mid x_i) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left\{ - \frac{\epsilon_i^2}{2\sigma^2} \right\} \]

- Assume σ^2 is known. The (conditional) likelihood function is
 \[
 L_n(\beta) = \prod_{i=1}^{n} f(y_i \mid x_i; \beta) \propto \exp \left\{ - \sum_{i=1}^{n} \frac{(y_i - \beta^T x_i)^2}{2\sigma^2} \right\}
 \]

- The log-likelihood is $\ell_n(\beta) \propto -\text{RSS}(\beta)$

- The MLE $\hat{\beta}_n^{ML}$ maximizes the log-likelihood function, thus
 \[
 \hat{\beta}_n^{ML} = \arg \max_{\beta} \ell_n(\beta) = \arg \min_{\beta} \text{RSS}(\beta) = \hat{\beta}_n^{LS}
 \]

- Take-home: Under a linear-Gaussian model the LSE is also a MLE
Consider again Gaussian errors, i.e., \(f(\epsilon_i \mid x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{\epsilon_i^2}{2\sigma^2} \right\} \)

\[\Rightarrow \text{Gaussian prior to model the parameters: } \beta \sim \mathcal{N}(0, \tau^2 I) \]

\[\Rightarrow \text{Variances } \sigma^2 \text{ and } \tau^2 \text{ assumed known. Define } \lambda := \left(\frac{\sigma}{\tau} \right)^2 \]

Bayesian approach: posterior \(F_{\beta \mid Y, X} \) is Gaussian, with log-density

\[\log f(\beta \mid Y, X) \propto -\sum_{i=1}^{n} (y_i - \beta^T x_i)^2 - \lambda \sum_{j=1}^{p} \beta_j^2 \]

MAP estimator \(\hat{\beta}_n^{MAP} := \arg \max_{\beta} f(\beta \mid Y, X) \) is thus the solution to

\[\hat{\beta}_n^{MAP} = \arg \min_{\beta} \text{RSS}(\beta) + \lambda \| \beta \|_2^2 \]

Carrying out the optimization yields \(\hat{\beta}_n^{MAP} = (X^T X + \lambda I)^{-1} X^T y \)

\[\Rightarrow \text{Recover the LSE as } \lambda \to 0 \iff \text{Uninformative prior when } \tau^2 \to \infty \]
Ridge regression

- Non-Bayesian, ℓ_2-norm penalized LSE also known as \textit{ridge regression}

\[\hat{\beta}^{\text{ridge}} = \arg \min_{\beta} \text{RSS}(\beta) + \lambda \|\beta\|_2^2 \]

- For $\lambda > 0$, the ridge estimator $\hat{\beta}^{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$
 - Differs from the LSE $\hat{\beta}^{\text{LS}} := \arg \min_{\beta} \text{RSS}(\beta)$
 - Is biased, and bias($\hat{\beta}^{\text{ridge}}$) increases with λ
 - Is well defined even when X is not of full rank

- In exchange for bias, potential to reduce variance below $\text{var} \left[\hat{\beta}^{\text{LS}} \right]$
 - \textbf{Ex:} Large var $\left[\hat{\beta}^{\text{LS}} \right]$ when X nearly rank-deficient, unstable $(X^T X)^{-1}$

- From bias-variance MSE decomposition, fruitful tradeoff may yield

\[\text{MSE}(\hat{\beta}^{\text{ridge}}) < \text{MSE}(\hat{\beta}^{\text{LS}}) \]

\Rightarrow Tradeoff depends on λ, chosen subjectively or via \textit{cross validation}
Ridge an instance from the general class of complexity-penalized LSE

\[\hat{\beta}^J = \arg \min_{\beta} \text{RSS}(\beta) + \lambda J(\beta) \]

- Function $J(\cdot)$ penalizes (i.e., constrains) the parameters in β
- Constrained parameter space Θ effects ‘less complex’ models
- Tuning λ balances goodness-of-fit and model complexity

- Ex: ℓ_1-norm penalized LSE for sparsity, i.e., variable selection
Glossary

- Statistical inference
- Outcome or response
- Predictor, feature or regressor
- (Non) parametric model
- Nuisance parameter
- Regression function
- Prediction
- Classification
- Point and set estimation
- Estimator and estimate
- Standard error

- Consistent estimator
- Confidence interval
- Hypothesis test
- Null hypothesis
- Test statistic and critical value
- Method of moments estimator
- Maximum likelihood estimator
- Likelihood function
- Significance level and p-value
- Prior and posterior distribution
- Multiple linear regression
- Least-squares estimator