Gaussian, Markov and stationary processes

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

November 15, 2019
Introduction and roadmap

Gaussian processes

Brownian motion and its variants

White Gaussian noise
Random processes

- Random processes assign a function $X(t)$ to a random event
 - Without restrictions, there is little to say about them
 - Markov property simplifies matters and is not too restrictive

- Also constrained ourselves to discrete state spaces
 - Further simplification but might be too restrictive

- Time t and range of $X(t)$ values continuous in general
 - Time and/or state may be discrete as particular cases

- Restrict attention to (any type or a combination of types)
 - Markov processes (memoryless)
 - Gaussian processes (Gaussian probability distributions)
 - Stationary processes (“limit distribution”)
Markov processes

- $X(t)$ is a Markov process when the future is independent of the past

- For all $t > s$ and arbitrary values $x(t)$, $x(s)$ and $x(u)$ for all $u < s$

 \[
 P(X(t) \leq x(t) \mid X(s) \leq x(s), X(u) \leq x(u), u < s) = P(X(t) \leq x(t) \mid X(s) \leq x(s))
 \]

 ⇒ Markov property defined in terms of cdfs, not pmfs

- Markov property useful for same reasons as in discrete time/state

 ⇒ But not that useful as in discrete time/state

- More details later
Gaussian processes

- $X(t)$ is a **Gaussian process** when all prob. distributions are Gaussian.

- For arbitrary $n > 0$, times t_1, t_2, \ldots, t_n it holds
 - Values $X(t_1), X(t_2), \ldots, X(t_n)$ are jointly Gaussian RVs.

- Simplifies study because Gaussian distribution is simplest possible
 - Suffices to know mean, variances and (cross-)covariances
 - Linear transformation of independent Gaussians is Gaussian
 - Linear transformation of jointly Gaussians is Gaussian

- More details later.
Markov processes + Gaussian processes

- **Markov** (memoryless) and **Gaussian** properties are different
 ⇒ Will study cases when both hold

- **Brownian motion**, also known as Wiener process
 ⇒ Brownian motion with drift
 ⇒ **White noise** ⇒ Linear evolution models

- **Geometric brownian motion**
 ⇒ Arbitrages
 ⇒ Risk neutral measures
 ⇒ Pricing of stock options (Black-Scholes)
Stationary processes

- Process $X(t)$ is stationary if probabilities are invariant to time shifts.

- For arbitrary $n > 0$, times t_1, t_2, \ldots, t_n and arbitrary time shift s

 \[P(X(t_1 + s) \leq x_1, X(t_2 + s) \leq x_2, \ldots, X(t_n + s) \leq x_n) = P(X(t_1) \leq x_1, X(t_2) \leq x_2, \ldots, X(t_n) \leq x_n) \]

 ⇒ System’s behavior is independent of time origin.

- Follows from our success studying limit probabilities.
 ⇒ Study of stationary process ≈ Study of limit distribution.

- Will study ⇒ Spectral analysis of stationary random processes
 ⇒ Linear filtering of stationary random processes.

- More details later.
Introduction and roadmap

Gaussian processes

Brownian motion and its variants

White Gaussian noise
Def: Random variables X_1, \ldots, X_n are jointly Gaussian (normal) if any linear combination of them is Gaussian

\Rightarrow Given $n > 0$, for any scalars a_1, \ldots, a_n the RV $(a = [a_1, \ldots, a_n]^T)$

$$Y = a_1X_1 + a_2X_2 + \ldots + a_nX_n = a^TX$$ is Gaussian distributed

\Rightarrow May also say vector RV $X = [X_1, \ldots, X_n]^T$ is Gaussian

Consider 2 dimensions \Rightarrow 2 RVs X_1 and X_2 are jointly normal

To describe joint distribution have to specify

\Rightarrow Means: $\mu_1 = \mathbb{E}[X_1]$ and $\mu_2 = \mathbb{E}[X_2]$

\Rightarrow Variances: $\sigma_{11}^2 = \text{var}[X_1] = \mathbb{E}[(X_1 - \mu_1)^2]$ and $\sigma_{22}^2 = \text{var}[X_2]$

\Rightarrow Covariance: $\sigma_{12}^2 = \text{cov}(X_1, X_2) = \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)] = \sigma_{21}^2$
Define **mean vector** $\mathbf{\mu} = [\mu_1, \mu_2]^T$ and **covariance matrix** $\mathbf{C} \in \mathbb{R}^{2 \times 2}$

$$
\mathbf{C} = \begin{pmatrix}
\sigma_{11}^2 & \sigma_{12}^2 \\
\sigma_{21}^2 & \sigma_{22}^2
\end{pmatrix}
$$

$\Rightarrow \mathbf{C}$ is symmetric, i.e., $\mathbf{C}^T = \mathbf{C}$ because $\sigma_{21}^2 = \sigma_{12}^2$

Joint pdf of $\mathbf{X} = [X_1, X_2]^T$ **is given by**

$$
f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi \det^{1/2}(\mathbf{C})} \exp \left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{C}^{-1} (\mathbf{x} - \mathbf{\mu}) \right)
$$

\Rightarrow Assumed that \mathbf{C} is invertible, thus $\det(\mathbf{C}) \neq 0$

If the pdf of \mathbf{X} **is** $f_{\mathbf{X}}(\mathbf{x})$ **above, can verify** $\mathbf{Y} = \mathbf{a}^T \mathbf{X}$ **is Gaussian**
Pdf of jointly Gaussian RVs in \(n \) dimensions

- For \(\mathbf{X} \in \mathbb{R}^n \) (\(n \) dimensions) define \(\mathbf{\mu} = \mathbb{E}[\mathbf{X}] \) and covariance matrix

\[
\mathbf{C} := \mathbb{E}[(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^T] = \\
\begin{pmatrix}
\sigma_{11}^2 & \sigma_{12}^2 & \ldots & \sigma_{1n}^2 \\
\sigma_{21}^2 & \sigma_{22}^2 & \ldots & \sigma_{2n}^2 \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n1}^2 & \sigma_{n2}^2 & \ldots & \sigma_{nn}^2
\end{pmatrix}
\]

\(\Rightarrow \) \(\mathbf{C} \) symmetric, \((i,j)\)-th element is \(\sigma_{ij}^2 = \text{cov}(X_i, X_j) \)

- Joint pdf of \(\mathbf{X} \) defined as before (almost, spot the difference)

\[
f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \det^{1/2}(\mathbf{C})} \exp \left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{\mu}) \right)
\]

\(\Rightarrow \) \(\mathbf{C} \) invertible and \(\det(\mathbf{C}) \neq 0 \). All linear combinations normal

- To fully specify the probability distribution of a Gaussian vector \(\mathbf{X} \)

\(\Rightarrow \) The mean vector \(\mathbf{\mu} \) and covariance matrix \(\mathbf{C} \) suffice
With $x \in \mathbb{R}^n$, $\mu \in \mathbb{R}^n$ and $C \in \mathbb{R}^{n \times n}$, define function $\mathcal{N}(x; \mu, C)$ as

$$
\mathcal{N}(x; \mu, C) := \frac{1}{(2\pi)^{n/2} \det^{1/2}(C)} \exp \left(-\frac{1}{2} (x - \mu)^T C^{-1} (x - \mu) \right)
$$

$\Rightarrow \mu$ and C are parameters, x is the argument of the function

Let $X \in \mathbb{R}^n$ be a Gaussian vector with mean μ, and covariance C

\Rightarrow Can write the pdf of X as $f_X(x) = \mathcal{N}(x; \mu, C)$

If X_1, \ldots, X_n are mutually independent, then $C = \text{diag}(\sigma_{11}^2, \ldots, \sigma_{nn}^2)$ and

$$
f_X(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi \sigma_{ii}^2}} \exp \left(-\frac{(x_i - \mu_i)^2}{2\sigma_{ii}^2} \right)
$$
Gaussian processes

- Gaussian processes (GP) generalize Gaussian vectors to infinite dimensions

- **Def:** $X(t)$ is a GP if any linear combination of values $X(t)$ is Gaussian

 - For arbitrary $n > 0$, times t_1, \ldots, t_n and constants a_1, \ldots, a_n

 $$Y = a_1 X(t_1) + a_2 X(t_2) + \ldots + a_n X(t_n)$$ is Gaussian distributed

 - Time index t can be continuous or discrete

- More general, any linear functional of $X(t)$ is normally distributed

 - A functional is a function of a function

Ex: The (random) integral $Y = \int_{t_1}^{t_2} X(t) \, dt$ is Gaussian distributed

 - Integral functional is akin to a sum of $X(t_i)$, for all $t_i \in [t_1, t_2]$
Joint pdfs in a Gaussian process

- Consider times \(t_1, \ldots, t_n \). The mean value \(\mu(t_i) \) at such times is
 \[
 \mu(t_i) = \mathbb{E}[X(t_i)]
 \]

- The covariance between values at times \(t_i \) and \(t_j \) is
 \[
 C(t_i, t_j) = \mathbb{E}[(X(t_i) - \mu(t_i))(X(t_j) - \mu(t_j))]
 \]

- Covariance matrix for values \(X(t_1), \ldots, X(t_n) \) is then
 \[
 C(t_1, \ldots, t_n) =
 \begin{pmatrix}
 C(t_1, t_1) & C(t_1, t_2) & \cdots & C(t_1, t_n) \\
 C(t_2, t_1) & C(t_2, t_2) & \cdots & C(t_2, t_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 C(t_n, t_1) & C(t_n, t_2) & \cdots & C(t_n, t_n)
 \end{pmatrix}
 \]

- Joint pdf of \(X(t_1), \ldots, X(t_n) \) then given as
 \[
 f_{X(t_1),\ldots,X(t_n)}(x_1, \ldots, x_n) = \mathcal{N} \left([x_1, \ldots, x_n]^T; [\mu(t_1), \ldots, \mu(t_n)]^T, C(t_1, \ldots, t_n) \right)
 \]
Mean value and autocorrelation functions

- To specify a Gaussian process, suffices to specify:
 - Mean value function $\Rightarrow \mu(t) = \mathbb{E}[X(t)]$; and
 - Autocorrelation function $\Rightarrow R(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)]$

- Autocovariance obtained as $C(t_1, t_2) = R(t_1, t_2) - \mu(t_1)\mu(t_2)$

- For simplicity, will mostly consider processes with $\mu(t) = 0$
 - Otherwise, can define process $Y(t) = X(t) - \mu_X(t)$
 - In such case $C(t_1, t_2) = R(t_1, t_2)$ because $\mu_Y(t) = 0$

- Autocorrelation is a symmetric function of two variables t_1 and t_2

 \[R(t_1, t_2) = R(t_2, t_1) \]
Probabilities in a Gaussian process

All probs. in a GP can be expressed in terms of $\mu(t)$ and $R(t_1, t_2)$

For example, pdf of $X(t)$ is

$$f_{X(t)}(x_t) = \frac{1}{\sqrt{2\pi(R(t, t) - \mu^2(t))}} \exp \left(-\frac{(x_t - \mu(t))^2}{2(R(t, t) - \mu^2(t))} \right)$$

Notice that $\frac{X(t) - \mu(t)}{\sqrt{R(t,t) - \mu^2(t)}}$ is a standard Gaussian random variable

$$\Rightarrow \quad P(X(t) > a) = \Phi \left(\frac{a - \mu(t)}{\sqrt{R(t,t) - \mu^2(t)}} \right), \text{ where}$$

$$\Phi(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right) dx$$
Joint and conditional probabilities in a GP

- For a zero-mean GP $X(t)$ consider two times t_1 and t_2

- The covariance matrix for $X(t_1)$ and $X(t_2)$ is

$$C = \begin{pmatrix} R(t_1, t_1) & R(t_1, t_2) \\ R(t_1, t_2) & R(t_2, t_2) \end{pmatrix}$$

- Joint pdf of $X(t_1)$ and $X(t_2)$ then given as (recall $\mu(t) = 0$)

$$f_{X(t_1), X(t_2)}(x_{t_1}, x_{t_2}) = \frac{1}{2\pi \det^{1/2}(C)} \exp \left(-\frac{1}{2} [x_{t_1}, x_{t_2}]^T C^{-1} [x_{t_1}, x_{t_2}] \right)$$

- Conditional pdf of $X(t_1)$ given $X(t_2)$ computed as

$$f_{X(t_1)|X(t_2)}(x_{t_1} | x_{t_2}) = \frac{f_{X(t_1), X(t_2)}(x_{t_1}, x_{t_2})}{f_{X(t_2)}(x_{t_2})}$$
Introduction and roadmap

Gaussian processes

Brownian motion and its variants

White Gaussian noise
Brownian motion as limit of random walk

- Gaussian processes are natural models due to Central Limit Theorem
- Let us reconsider a symmetric random walk in one dimension

\[x(t) \]

Time interval = \(h \)

- Walker takes increasingly frequent and increasingly smaller steps
Brownian motion as limit of random walk

- Gaussian processes are natural models due to Central Limit Theorem
- Let us reconsider a symmetric random walk in one dimension

Time interval = $h/2$

$x(t)$

- Walker takes increasingly frequent and increasingly smaller steps
Brownian motion as limit of random walk

- Gaussian processes are natural models due to Central Limit Theorem
- Let us reconsider a symmetric random walk in one dimension

Time interval = $h/4$

$X(t)$

- Walker takes increasingly frequent and increasingly smaller steps
Let $X(t)$ be the position at time t with $X(0) = 0$

\Rightarrow Time interval is h and $\sigma \sqrt{h}$ is the size of each step

\Rightarrow Walker steps right or left w.p. $1/2$ for each direction

Given $X(t) = x$, prob. distribution of the position at time $t + h$ is

$$P\left(X(t + h) = x + \sigma \sqrt{h} \mid X(t) = x \right) = 1/2$$

$$P\left(X(t + h) = x - \sigma \sqrt{h} \mid X(t) = x \right) = 1/2$$

Consider time $T = Nh$ and index $n = 1, 2, \ldots, N$

\Rightarrow Introduce step RVs $Y_n = \pm 1$, with $P(Y_n = \pm 1) = 1/2$

\Rightarrow Can write $X(nh)$ in terms of $X((n-1)h)$ and Y_n as

$$X(nh) = X((n-1)h) + \left(\sigma \sqrt{h} \right) Y_n$$
Use recursion to write $X(T) = X(Nh)$ as (recall $X(0) = 0$)

$$X(T) = X(Nh) = X(0) + \left(\sigma\sqrt{h}\right) \sum_{n=1}^{N} Y_n = \left(\sigma\sqrt{h}\right) \sum_{n=1}^{N} Y_n$$

- Y_1, \ldots, Y_N are i.i.d. with zero-mean and variance

$$\text{var}[Y_n] = \mathbb{E}[Y_n^2] = (1/2) \times 1^2 + (1/2) \times (-1)^2 = 1$$

- As $h \to 0$ we have $N = T/h \to \infty$, and from Central Limit Theorem

$$\sum_{n=1}^{N} Y_n \sim \mathcal{N}(0, N) = \mathcal{N}(0, T/h)$$

$$\Rightarrow X(T) \sim \mathcal{N}(0, \sigma^2 h \times (T/h)) = \mathcal{N}(0, \sigma^2 T)$$
More generally, consider times $T = Nh$ and $T + S = (N + M)h$

Let $X(T) = x(T)$ be given. Can write $X(T + S)$ as

$$X(T + S) = x(T) + \left(\sigma \sqrt{h}\right) \sum_{n=N+1}^{N+M} Y_n$$

From Central Limit Theorem it then follows

$$\sum_{n=N+1}^{N+M} Y_n \sim \mathcal{N}(0, (N + M - N)) = \mathcal{N}(0, S/h)$$

$$\Rightarrow \left[X(T + S) \mid X(T) = x(T)\right] \sim \mathcal{N}(x(T), \sigma^2 S)$$
Definition of Brownian motion

- The former analysis was for motivational purposes
- **Def:** A Brownian motion process (a.k.a Wiener process) satisfies

 (i) $X(t)$ is normally distributed with zero mean and variance $\sigma^2 t$

 \[X(t) \sim \mathcal{N}(0, \sigma^2 t) \]

 (ii) Independent increments \Rightarrow For disjoint intervals (t_1, t_2) and (s_1, s_2) increments $X(t_2) - X(t_1)$ and $X(s_2) - X(s_1)$ are independent RVs

 (iii) Stationary increments \Rightarrow Probability distribution of increment $X(t+s) - X(s)$ is the same as probability distribution of $X(t)$

- Property (ii) \Rightarrow Brownian motion is a Markov process

- Properties (i)-(iii) \Rightarrow Brownian motion is a Gaussian process
Mean and autocorrelation of Brownian motion

- Mean function $\mu(t) = \mathbb{E}[X(t)]$ is null for all times (by definition)
 \[\mu(t) = \mathbb{E}[X(t)] = 0 \]

- For autocorrelation $R_X(t_1, t_2)$ start with times $t_1 < t_2$

- Use conditional expectations to write
 \[R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)] = \mathbb{E}_{X(t_1)} \left[\mathbb{E}_{X(t_2)} [X(t_1)X(t_2) \mid X(t_1)] \right] \]

- In the innermost expectation $X(t_1)$ is a given constant, then
 \[R_X(t_1, t_2) = \mathbb{E}_{X(t_1)} \left[X(t_1) \mathbb{E}_{X(t_2)} [X(t_2) \mid X(t_1)] \right] \]
 \[\Rightarrow \text{Proceed by computing innermost expectation} \]
The conditional distribution of $X(t_2)$ given $X(t_1)$ for $t_1 < t_2$ is

$$\left[X(t_2) \mid X(t_1) \right] \sim \mathcal{N}(X(t_1), \sigma^2(t_2 - t_1))$$

\Rightarrow Innermost expectation is $\mathbb{E}_{X(t_2)}[X(t_2) \mid X(t_1)] = X(t_1)$

From where autocorrelation follows as

$$R_X(t_1, t_2) = \mathbb{E}_{X(t_1)}[X(t_1)X(t_1)] = \mathbb{E}_{X(t_1)}[X^2(t_1)] = \sigma^2 t_1$$

Repeating steps, if $t_2 < t_1$ $\Rightarrow R_X(t_1, t_2) = \sigma^2 t_2$

Autocorrelation of Brownian motion $\Rightarrow R_X(t_1, t_2) = \sigma^2 \min(t_1, t_2)$
Brownian motion with drift

- Similar to Brownian motion, but start from biased random walk

- Time interval h, step size $\sigma \sqrt{h}$, right or left with different probs.

$$P \left(X(t + h) = x + \sigma \sqrt{h} \mid X(t) = x \right) = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h} \right)$$

$$P \left(X(t + h) = x - \sigma \sqrt{h} \mid X(t) = x \right) = \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h} \right)$$

\Rightarrow If $\mu > 0$ biased to the right, if $\mu < 0$ biased to the left

- Definition requires h small enough to make $(\mu / \sigma) \sqrt{h} \leq 1$

- Notice that bias vanishes as \sqrt{h}, same as step size
Mean and variance of biased steps

- Define step RV $Y_n = \pm 1$, with probabilities
 $$P(Y_n = 1) = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h} \right), \quad P(Y_n = -1) = \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h} \right)$$

- Expected value of Y_n is
 $$\mathbb{E}[Y_n] = 1 \times P(Y_n = 1) + (-1) \times P(Y_n = -1)$$
 $$= \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h} \right) - \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h} \right) = \frac{\mu}{\sigma} \sqrt{h}$$

- Second moment of Y_n is
 $$\mathbb{E}[Y_n^2] = (1)^2 \times P(Y_n = 1) + (-1)^2 \times P(Y_n = -1) = 1$$

- Variance of Y_n is
 $$\Rightarrow \text{var}[Y_n] = \mathbb{E}[Y_n^2] - \mathbb{E}^2[Y_n] = 1 - \frac{\mu^2}{\sigma^2} h$$
Central Limit Theorem as $h \to 0$

- Consider time $T = Nh$, index $n = 1, 2, \ldots, N$. Write $X(nh)$ as
 \[X(nh) = X((n - 1)h) + \left(\sigma\sqrt{h}\right) Y_n\]

- Use recursively to write $X(T) = X(Nh)$ as
 \[X(T) = X(Nh) = X(0) + \left(\sigma\sqrt{h}\right) \sum_{n=1}^{N} Y_n = \left(\sigma\sqrt{h}\right) \sum_{n=1}^{N} Y_n\]

- As $h \to 0$ we have $N \to \infty$ and $\sum_{n=1}^{N} Y_n$ normally distributed

- As $h \to 0$, $X(T)$ tends to be normally distributed by CLT
 - Need to determine mean and variance (and only mean and variance)
Mean and variance of $X(T)$

- Expected value of $X(T) = \text{scaled sum of } \mathbb{E}[Y_n]$ (recall $T = Nh$)

$$
\mathbb{E}[X(T)] = (\sigma \sqrt{h}) \times N \times \mathbb{E}[Y_n] = (\sigma \sqrt{h}) \times N \times \left(\frac{\mu}{\sigma} \sqrt{h} \right) = \mu T
$$

- Variance of $X(T) = \text{scaled sum of variances of independent } Y_n$

$$
\text{var}[X(T)] = \left(\sigma \sqrt{h} \right)^2 \times N \times \text{var}[Y_n]
= (\sigma^2 h) \times N \times \left(1 - \frac{\mu^2}{\sigma^2 h} \right) \rightarrow \sigma^2 T
$$

\Rightarrow Used $T = Nh$ and $1 - (\mu^2 / \sigma^2)h \rightarrow 1$

- **Brownian motion with drift (BMD)** $\Rightarrow X(t) \sim \mathcal{N} \left(\mu t, \sigma^2 t \right)$

\Rightarrow Normal with mean μt and variance $\sigma^2 t$

\Rightarrow Independent and stationary increments
Suppose next state follows by multiplying current by a random factor.

⇒ Compare with adding or subtracting a random quantity.

Define RV $Y_n = \pm 1$ with probabilities as in biased random walk:

$$P(Y_n = 1) = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h}\right), \quad P(Y_n = -1) = \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h}\right)$$

Def: The geometric random walk follows the recursion:

$$Z(nh) = Z((n - 1)h)e^{(\sigma \sqrt{h})Y_n}$$

⇒ When $Y_n = 1$ increase $Z(nh)$ by relative amount $e^{(\sigma \sqrt{h})}$

⇒ When $Y_n = -1$ decrease $Z(nh)$ by relative amount $e^{-(\sigma \sqrt{h})}$

Notice $e^{\pm(\sigma \sqrt{h})} \approx 1 \pm (\sigma \sqrt{h})$ ⇒ Useful to model investment return.
Geometric Brownian motion

- Take logarithms on both sides of recursive definition

\[
\log \left(Z(nh) \right) = \log \left(Z((n - 1)h) \right) + \left(\sigma \sqrt{h} \right) Y_n
\]

- Define \(X(nh) = \log \left(Z(nh) \right) \), thus recursion for \(X(nh) \) is

\[
X(nh) = X((n - 1)h) + \left(\sigma \sqrt{h} \right) Y_n
\]

\(\Rightarrow \) As \(h \to 0 \), \(X(t) \) becomes BMD with parameters \(\mu \) and \(\sigma^2 \)

- **Def:** Given a BMD \(X(t) \) with parameters \(\mu \) and \(\sigma^2 \), the process \(Z(t) \)

\[
Z(t) = e^{X(t)}
\]

is a geometric Brownian motion (GBM) with parameters \(\mu \) and \(\sigma^2 \)
White Gaussian noise

Introduction and roadmap

Gaussian processes

Brownian motion and its variants

White Gaussian noise
Consider a function $\delta_h(t)$ defined as

$$\delta_h(t) = \begin{cases} \frac{1}{h} & \text{if } -h/2 \leq t \leq h/2 \\ 0 & \text{else} \end{cases}$$

"Define" delta function as limit of $\delta_h(t)$ as $h \to 0$

$$\delta(t) = \lim_{h \to 0} \delta_h(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{else} \end{cases}$$

Q: Is this a function? A: Of course not

Consider the integral of $\delta_h(t)$ in an interval that includes $[-h/2, h/2]$.

$$\int_a^b \delta_h(t) \, dt = 1, \quad \text{for any } a, b \text{ such that } a \leq -h/2, \ h/2 \leq b$$

\Rightarrow Integral is 1 independently of $h
Another integral involving $\delta_h(t)$ (for h small)

$$\int_a^b f(t)\delta_h(t)\,dt \approx \int_{-h/2}^{h/2} f(0) \frac{1}{h} \,dt \approx f(0), \quad a \leq -h/2, \; h/2 \leq b$$

Def: The generalized function $\delta(t)$ is the entity having the property

$$\int_a^b f(t)\delta(t)\,dt = \begin{cases} f(0) & \text{if } a < 0 < b \\ 0 & \text{else} \end{cases}$$

A delta function is not defined, its action on other functions is

Interpretation: A delta function cannot be observed directly

\Rightarrow But can be observed through its effect on other functions

Delta function helps to define derivatives of discontinuous functions
Heaviside’s step function and delta function

- Integral of delta function between $-\infty$ and t

$$\int_{-\infty}^{t} \delta(u) \, du = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases} := H(t)$$

\Rightarrow $H(t)$ is called Heaviside’s step function

- Define the derivative of Heaviside’s step function as

$$\frac{\partial H(t)}{\partial t} = \delta(t)$$

\Rightarrow Maintains consistency of fundamental theorem of calculus
Def: A white Gaussian noise (WGN) process \(W(t) \) is a GP with

- Zero mean: \(\mu(t) = \mathbb{E}[W(t)] = 0 \) for all \(t \)
- Delta function autocorrelation: \(R_W(t_1, t_2) = \sigma^2 \delta(t_1 - t_2) \)

To interpret \(W(t) \) consider time step \(h \) and process \(W_h(nh) \) with

(i) Normal distribution \(W_h(nh) \sim \mathcal{N}(0, \sigma^2/h) \)
(ii) \(W_h(n_1 h) \) and \(W_h(n_2 h) \) are independent for \(n_1 \neq n_2 \)

White noise \(W(t) \) is the limit of the process \(W_h(nh) \) as \(h \to 0 \)

\[
W(t) = \lim_{n \to \infty} W_h(nh), \quad \text{with } n = t/h
\]

Process \(W_h(nh) \) is the discrete-time representation of WGN
Properties of white Gaussian noise

- For different times t_1 and t_2, $W(t_1)$ and $W(t_2)$ are uncorrelated

\[\mathbb{E}[W(t_1)W(t_2)] = R_W(t_1, t_2) = 0, \quad t_1 \neq t_2 \]

- But since $W(t)$ is Gaussian uncorrelatedness implies independence
 \[\Rightarrow \] Values of $W(t)$ at different times are independent

- WGN has infinite power
 \[\Rightarrow \] \[\mathbb{E}[W^2(t)] = R_W(t, t) = \sigma^2 \delta(0) = \infty \]
 \[\Rightarrow \] WGN does not represent any physical phenomena

- However WGN is a convenient abstraction
 - Approximates processes with large power and \(\approx \) independent samples

- Some processes can be modeled as post-processing of WGN
 \[\Rightarrow \] Cannot observe WGN directly
 \[\Rightarrow \] But can model its effect on systems, e.g., filters
Consider integral of a WGN process $W(t) \Rightarrow X(t) = \int_0^t W(u) \, du$

Since integration is linear functional and $W(t)$ is GP, $X(t)$ is also GP

\Rightarrow To characterize $X(t)$ just determine mean and autocorrelation

The mean function $\mu(t) = \mathbb{E}[X(t)]$ is null

$$
\mu(t) = \mathbb{E} \left[\int_0^t W(u) \, du \right] = \int_0^t \mathbb{E}[W(u)] \, du = 0
$$

The autocorrelation $R_X(t_1, t_2)$ is given by (assume $t_1 < t_2$)

$$
R_X(t_1, t_2) = \mathbb{E} \left[\left(\int_0^{t_1} W(u_1) \, du_1 \right) \left(\int_0^{t_2} W(u_2) \, du_2 \right) \right]
$$
Product of integral is double integral of product

\[R_X(t_1, t_2) = \mathbb{E} \left[\int_0^{t_1} \int_0^{t_2} W(u_1)W(u_2) \, du_1 du_2 \right] \]

Interchange expectation and integration

\[R_X(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} \mathbb{E} [W(u_1)W(u_2)] \, du_1 du_2 \]

Definition and value of autocorrelation \(R_W(u_1, u_2) = \sigma^2 \delta(u_1 - u_2) \)

\[R_X(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} \sigma^2 \delta(u_1 - u_2) \, du_1 du_2 \]

\[= \int_0^{t_1} \int_0^{t_1} \sigma^2 \delta(u_1 - u_2) \, du_1 du_2 + \int_0^{t_1} \int_{t_1}^{t_2} \sigma^2 \delta(u_1 - u_2) \, du_1 du_2 \]

\[= \int_0^{t_1} \sigma^2 \, du_1 = \sigma^2 t_1 \]

⇒ Same mean and autocorrelation functions as Brownian motion
White Gaussian noise and Brownian motion

- GPs are uniquely determined by mean and autocorrelation functions
 → The integral of WGN is a Brownian motion process
 → Conversely the derivative of Brownian motion is WGN

- With $W(t)$ a WGN process and $X(t)$ Brownian motion

\[\int_0^t W(u) \, du = X(t) \quad \Leftrightarrow \quad \frac{\partial X(t)}{\partial t} = W(t) \]

- Brownian motion can be also interpreted as a sum of Gaussians
 → Not Bernoullis as before with the random walk
 → Any i.i.d. distribution with same mean and variance works

- This is all nice, but derivatives and integrals involve limits
 → What are these derivatives and integrals?
Consider a realization \(x(t) \) of the random process \(X(t) \)

Def: The derivative of (lowercase) \(x(t) \) is

\[
\frac{\partial x(t)}{\partial t} = \lim_{h \to 0} \frac{x(t + h) - x(t)}{h}
\]

When this limit exists \(\Rightarrow \) Limit may not exist for all realizations

Can define sure limit, a.s. limit, in probability, . . .

\(\Rightarrow \) Notion of convergence used here is in mean-squared sense

Def: Process \(\frac{\partial X(t)}{\partial t} \) is the mean-square sense derivative of \(X(t) \) if

\[
\lim_{h \to 0} \mathbb{E} \left[\left(\frac{X(t + h) - X(t)}{h} - \frac{\partial X(t)}{\partial t} \right)^2 \right] = 0
\]
Likewise consider the integral of a realization \(x(t) \) of \(X(t) \)

\[
\int_a^b x(t) \, dt = \lim_{h \to 0} \frac{(b-a)}{h} \sum_{n=1}^{(b-a)/h} h x(a + nh)
\]

⇒ Limit need not exist for all realizations

Can define in sure sense, almost sure sense, in probability sense, . . .

⇒ Again, adopt definition in mean-square sense

Def: Process \(\int_a^b X(t) \, dt \) is the mean square sense integral of \(X(t) \) if

\[
\lim_{h \to 0} \mathbb{E} \left[\left(\sum_{n=1}^{(b-a)/h} h X(a + nh) - \int_a^b X(t) \, dt \right)^2 \right] = 0
\]

Mean-square sense convergence is convenient to work with GPs
Def: A random process $X(t)$ follows a **linear state model** if

$$\frac{\partial X(t)}{\partial t} = aX(t) + W(t)$$

with $W(t)$ WGN, autocorrelation $R_W(t_1, t_2) = \sigma^2 \delta(t_1 - t_2)$

Discrete-time representation of $X(t)$ \Rightarrow $X(nh)$ with step size h

Solving differential equation between nh and $(n + 1)h$ (h small)

$$X((n + 1)h) \approx X(nh)e^{ah} + \int_{nh}^{(n+1)h} W(t) \, dt$$

Defining $X(n) := X(nh)$ and $W(n) := \int_{nh}^{(n+1)h} W(t) \, dt$ may write

$$X(n + 1) \approx (1 + ah)X(n) + W(n)$$

\Rightarrow Where $\mathbb{E} [W^2(n)] = \sigma^2 h$ and $W(n_1)$ independent of $W(n_2)$
Vector linear state model example

- **Def:** A vector random process $X(t)$ follows a linear state model if

$$\frac{\partial X(t)}{\partial t} = AX(t) + W(t)$$

with $W(t)$ vector WGN, autocorrelation $R_W(t_1, t_2) = \sigma^2 \delta(t_1 - t_2)I$

- **Discrete-time representation of $X(t)$** $\Rightarrow X(nh)$ with step size h

- **Solving differential equation between nh and $(n+1)h$ (h small)**

$$X((n+1)h) \approx X(nh)e^{Ah} + \int_{nh}^{(n+1)h} W(t) dt$$

- **Defining $X(n) := X(nh)$ and $W(n) := \int_{nh}^{(n+1)h} W(t) dt$ may write**

$$X(n+1) \approx (I + Ah)X(n) + W(n)$$

\Rightarrow Where $\mathbb{E}[W^2(n)] = \sigma^2 hI$ and $W(n_1)$ independent of $W(n_2)$
Glossary

- Markov process
- Gaussian process
- Stationary process
- Gaussian random vectors
- Mean vector
- Covariance matrix
- Multivariate Gaussian pdf
- Linear functional
- Autocorrelation function
- Brownian motion (Wiener process)
- Brownian motion with drift
- Geometric random walk
- Geometric Brownian motion
- Investment returns
- Dirac delta function
- Heaviside’s step function
- White Gaussian noise
- Mean-square derivatives
- Mean-square integrals
- Linear (vector) state model