Probability Review

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

September 17, 2019
Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Markov’s inequality

- RV X with $\mathbb{E}[|X|] < \infty$, constant $a > 0$
- Markov’s inequality states $\Rightarrow P(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}$

Proof.

- $\mathbb{I}\{|X| \geq a\} = 1$ when $|X| \geq a$ and 0 else. Then (figure to the right)
 \[
 a\mathbb{I}\{|X| \geq a\} \leq |X|
 \]

- Use linearity of expected value
 \[
 a\mathbb{E}(\mathbb{I}\{|X| \geq a\}) \leq \mathbb{E}(|X|)
 \]

- Indicator function’s expectation = Probability of indicated event
 \[
 aP(|X| \geq a) \leq \mathbb{E}(|X|)
 \]
Chebyshev’s inequality

- RV X with $E(X) = \mu$ and $E\left[(X - \mu)^2\right] = \sigma^2$, constant $k > 0$
- Chebyshev’s inequality states $\Rightarrow P\left(|X - \mu| \geq k\right) \leq \frac{\sigma^2}{k^2}$

Proof.

- Markov’s inequality for the RV $Z = (X - \mu)^2$ and constant $a = k^2$
 \[P\left((X - \mu)^2 \geq k^2\right) = P\left(|Z| \geq k^2\right) \leq \frac{E[|Z|]}{k^2} = \frac{E\left[(X - \mu)^2\right]}{k^2} \]

- Notice that $(X - \mu)^2 \geq k^2$ if and only if $|X - \mu| \geq k$ thus
 \[P\left(|X - \mu| \geq k\right) \leq \frac{E\left[(X - \mu)^2\right]}{k^2} \]

- Chebyshev’s inequality follows from definition of variance
Comments and observations

- If absolute expected value is finite, i.e., $\mathbb{E}[|X|] < \infty$
 \Rightarrow Complementary (c)cdf decreases at least like x^{-1} (Markov’s)

- If mean $\mathbb{E}(X)$ and variance $\mathbb{E}[(X - \mu)^2]$ are finite
 \Rightarrow Ccdf decreases at least like x^{-2} (Chebyshev’s)

- Most cdfs decrease exponentially (e.g. e^{-x^2} for normal)
 \Rightarrow Power law bounds $\propto x^{-\alpha}$ are loose but still useful

- Markov’s inequality often derived for nonnegative RV $X \geq 0$
 \Rightarrow Can drop the absolute value to obtain $P(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$
 \Rightarrow General bound $P(X \geq a) \leq \frac{\mathbb{E}(X^r)}{a^r}$ holds for $r > 0$
Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Limits

- Sequence of RVs $X_N = X_1, X_2, \ldots, X_n, \ldots$
 - Distinguish between random process X_N and realizations x_N

Q1) Say something about X_n for n large? ⇒ Not clear, X_n is a RV

Q2) Say something about x_n for n large? ⇒ Certainly, look at $\lim_{n \to \infty} x_n$

Q3) Say something about $P(X_n \in \mathcal{X})$ for n large? ⇒ Yes, $\lim_{n \to \infty} P(X_n \in \mathcal{X})$

- Translate what we now about regular limits to definitions for RVs

- Can start from convergence of sequences: $\lim_{n \to \infty} x_n$
 - Sure and almost sure convergence

- Or from convergence of probabilities: $\lim_{n \to \infty} P(X_n)$
 - Convergence in probability, in mean square and distribution
Convergence of sequences and sure convergence

- Denote sequence of numbers $x_N = x_1, x_2, \ldots, x_n, \ldots$

- **Def:** Sequence x_N converges to the value x if given any $\epsilon > 0$
 \[\Rightarrow \text{There exists } n_0 \text{ such that for all } n > n_0, \ |x_n - x| < \epsilon \]
- Sequence x_n comes arbitrarily close to its limit \[\Rightarrow |x_n - x| < \epsilon \]
 \[\Rightarrow \text{And stays close to its limit for all } n > n_0 \]

- Random process (sequence of RVs) $X_N = X_1, X_2, \ldots, X_n, \ldots$
 \[\Rightarrow \text{Realizations of } X_N \text{ are sequences } x_N \]

- **Def:** We say X_N converges surely to RV X if
 \[\Rightarrow \lim_{n \to \infty} x_n = x \text{ for all realizations } x_N \text{ of } X_N \]
- Said differently, \[\lim_{n \to \infty} X_n(s) = X(s) \text{ for all } s \in S \]

- Not really adequate. Even a (practically unimportant) outcome that happens with vanishingly small probability prevents sure convergence
Almost sure convergence

- RV X and random process $X_N = X_1, X_2, \ldots, X_n, \ldots$
- **Def:** We say X_N converges almost surely to RV X if
 \[P \left(\lim_{n \to \infty} X_n = X \right) = 1 \]
 ⇒ Almost all sequences converge, except for a set of measure 0
- Almost sure convergence denoted as $\lim_{n \to \infty} X_n = X$ a.s.
 ⇒ Limit X is a random variable

Example

- $X_0 \sim \mathcal{N}(0, 1)$ (normal, mean 0, variance 1)
- Z_n sequence of Bernoulli RVs, parameter p
- Define $\Rightarrow X_n = X_0 - \frac{Z_n}{n}$
- $\frac{Z_n}{n} \to 0$ so $\lim_{n \to \infty} X_n = X_0$ a.s. (also surely)
Almost sure convergence example

- Consider $S = [0, 1]$ and let $P(\cdot)$ be the uniform probability distribution
 \[P([a, b]) = b - a \text{ for } 0 \leq a \leq b \leq 1 \]
- Define the RVs $X_n(s) = s + s^n$ and $X(s) = s$
- For all $s \in [0, 1)$ \(\Rightarrow\) $s^n \to 0$ as $n \to \infty$, hence $X_n(s) \to s = X(s)$
- For $s = 1$ \(\Rightarrow\) $X_n(1) = 2$ for all n, while $X(1) = 1$
- Convergence only occurs on the set $[0, 1)$, and $P([0, 1)) = 1$
 \[\Rightarrow \text{We say } \lim_{n \to \infty} X_n = X \text{ a.s.} \]
 \[\Rightarrow \text{Once more, note the limit } X \text{ is a random variable} \]
Convergence in probability

- **Def**: We say X_N converges in probability to RV X if for any $\epsilon > 0$
 \[
 \lim_{n \to \infty} \Pr(|X_n - X| < \epsilon) = 1
 \]
 \Rightarrow \text{Prob. of distance } |X_n - X| \text{ becoming smaller than } \epsilon \text{ tends to 1}

- Statement is about probabilities, not about realizations (sequences)
 \Rightarrow \text{Probability converges, realizations } x_N \text{ may or may not converge}
 \Rightarrow \text{Limit and prob. interchanged with respect to a.s. convergence}

Theorem

Almost sure (a.s.) convergence implies convergence in probability

Proof.

- If $\lim_{n \to \infty} X_n = X$ then for any $\epsilon > 0$ there is n_0 such that
 \[
 |X_n - X| < \epsilon \text{ for all } n \geq n_0
 \]
 \Rightarrow \text{True for all almost all sequences so } \Pr(|X_n - X| < \epsilon) \to 1
Convergence in probability example

- $X_0 \sim \mathcal{N}(0, 1)$ (normal, mean 0, variance 1)
- Z_n sequence of Bernoulli RVs, parameter $1/n$
- Define $\Rightarrow X_n = X_0 - Z_n$
- X_n converges in probability to X_0 because

 \[
 P \left(|X_n - X_0| < \epsilon \right) = P \left(|Z_n| < \epsilon \right) \\
 = 1 - P \left(Z_n = 1 \right) \\
 = 1 - \frac{1}{n} \to 1
 \]

- Plot of path x_n up to $n = 10^2$, $n = 10^3$, $n = 10^4$
 $\Rightarrow Z_n = 1$ becomes ever rarer but still happens
Difference between a.s. and in probability

- Almost sure convergence implies that almost all sequences converge
- Convergence in probability does not imply convergence of sequences
- Latter example: \(X_n = X_0 - Z_n \), \(Z_n \) is Bernoulli with parameter \(1/n \)
 - Showed it converges in probability
 \[
 P \left(|X_n - X_0| < \epsilon \right) = 1 - \frac{1}{n} \rightarrow 1
 \]
 - But for almost all sequences, \(\lim_{n \to \infty} x_n \) does not exist
- Almost sure convergence \(\Rightarrow \) disturbances stop happening
- Convergence in prob. \(\Rightarrow \) disturbances happen with vanishing freq.
- Difference not irrelevant
 - Interpret \(Z_n \) as rate of change in savings
 - With a.s. convergence risk is eliminated
 - With convergence in prob. risk decreases but does not disappear
Mean-square convergence

- **Def:** We say X_N converges in mean square to RV X if

$$\lim_{n \to \infty} \mathbb{E} \left[|X_n - X|^2 \right] = 0$$

- **⇒** Sometimes (very) easy to check

Theorem

Convergence in mean square implies convergence in probability

Proof.

- From Markov’s inequality

$$P \left(|X_n - X| \geq \epsilon \right) = P \left(|X_n - X|^2 \geq \epsilon^2 \right) \leq \frac{\mathbb{E} \left[|X_n - X|^2 \right]}{\epsilon^2}$$

- If $X_n \to X$ in mean-square sense, $\mathbb{E} \left[|X_n - X|^2 \right]/\epsilon^2 \to 0$ for all ϵ

- Almost sure and mean square $⇒$ neither one implies the other
Consider a random process X_N. Cdf of X_n is $F_n(x)$

Def: We say X_N converges in distribution to RV X with cdf $F_X(x)$ if

$$\lim_{n \to \infty} F_n(x) = F_X(x)$$

for all x at which $F_X(x)$ is continuous.

No claim about individual sequences, just the cdf of X_n.

Weakest form of convergence covered.

Implied by almost sure, in probability, and mean square convergence.

Example

- $Y_n \sim N(0,1)$
- Z_n Bernoulli with parameter p
- Define $X_n = Y_n - 10Z_n/n$
- $Z_n/n \to 0$ so $\lim_{n \to \infty} F_n(x) \sim N(0,1)$
Convergence in distribution (continued)

- Individual sequences x_n do not converge in any sense
 - It is the distribution that converges

- As the effect of Z_n/n vanishes pdf of X_n converges to pdf of Y_n
 - Standard normal $\mathcal{N}(0,1)$
Implications

- Sure \Rightarrow almost sure \Rightarrow in probability \Rightarrow in distribution
- Mean square \Rightarrow in probability \Rightarrow in distribution
- In probability \Rightarrow in distribution
Limit theorems

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Sum of independent identically distributed RVs

- Independent identically distributed (i.i.d.) RVs $X_1, X_2, \ldots, X_n, \ldots$
- Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n - \mu)^2] = \sigma^2$ for all n
- Q: What happens with sum $S_N := \sum_{n=1}^{N} X_n$ as N grows?

- Expected value of sum is $\mathbb{E}[S_N] = N\mu \Rightarrow$ Diverges if $\mu \neq 0$
- Variance is $\mathbb{E}[(S_N - N\mu)^2] = N\sigma^2$
 \Rightarrow Diverges if $\sigma \neq 0$ (always true unless X_n is a constant, boring)

- One interesting normalization $\Rightarrow \bar{X}_N := (1/N) \sum_{n=1}^{N} X_n$
- Now $\mathbb{E}[\bar{X}_N] = \mu$ and var $[\bar{X}_N] = \sigma^2/N$
 \Rightarrow Law of large numbers (weak and strong)

- Another interesting normalization $\Rightarrow Z_N := \frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}}$
- Now $\mathbb{E}[Z_N] = 0$ and var $[Z_N] = 1$ for all values of N
 \Rightarrow Central limit theorem
Law of large numbers

- Sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean μ
- Define sample average $\bar{X}_N := \frac{1}{N} \sum_{n=1}^{N} X_n$

Theorem (Weak law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges in prob. to $\mu = E[X_n]$

$$\lim_{N \to \infty} P \left(|\bar{X}_N - \mu| < \epsilon \right) = 1, \quad \text{for all } \epsilon > 0$$

Theorem (Strong law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges a.s. to $\mu = E[X_n]$

$$P \left(\lim_{N \to \infty} \bar{X}_N = \mu \right) = 1$$

- Strong law implies weak law. Can forget weak law if so wished
Proof of weak law of large numbers

- **Weak** law of large numbers is very simple to prove

Proof.

- Variance of \bar{X}_N vanishes for N large

$$\text{var} \left[\bar{X}_N \right] = \frac{1}{N^2} \sum_{n=1}^{N} \text{var} \left[X_n \right] = \frac{\sigma^2}{N} \to 0$$

- But, what is the variance of \bar{X}_N?

$$0 \leftarrow \frac{\sigma^2}{N} = \text{var} \left[\bar{X}_N \right] = \mathbb{E} \left[(\bar{X}_N - \mu)^2 \right]$$

- Then, \bar{X}_N converges to μ in mean-square sense

 ⇒ Which implies convergence in probability

- **Strong** law is a little more challenging. Will not prove it here
Coming full circle

Repeated experiment ⇒ Sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$
⇒ Consider an event of interest $X \in E$. Ex: coin comes up ‘H’

Fraction of times $X \in E$ happens in N experiments is

$$\bar{X}_N = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{X_n \in E\}$$

Since the indicators also i.i.d., the strong law asserts that

$$\lim_{N \to \infty} \bar{X}_N = \mathbb{E}[\mathbb{I}\{X_1 \in E\}] = P(X_1 \in E) \quad \text{a.s.}$$

Strong law consistent with our intuitive notion of probability
⇒ Relative frequency of occurrence of an event in many trials
⇒ Justifies simulation-based prob. estimates (e.g. histograms)
Central limit theorem (CLT)

Theorem (Central limit theorem)

Consider a sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean $E[X_n] = \mu$ and variance $E[(X_n - \mu)^2] = \sigma^2$ for all n. Then

$$\lim_{N \to \infty} P \left(\frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}} \leq x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

- Former statement implies that for N sufficiently large

$$Z_N := \frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}} \sim N(0, 1)$$

\Rightarrow Z_N converges in distribution to a standard normal RV
\Rightarrow Remarkable universality. Distribution of X_n arbitrary
Equivalently can say \[\sum_{n=1}^{N} X_n \sim \mathcal{N}(N\mu, N\sigma^2) \]

Sum of large number of i.i.d. RVs has a normal distribution

- Cannot take a meaningful limit here
- But intuitively, this is what the CLT states

Example

- Binomial RV \(X \) with parameters \((n, p)\)
- Write as \(X = \sum_{i=1}^{n} X_i \) with \(X_i \) i.i.d. Bernoulli with parameter \(p \)
- Mean \(\mathbb{E}[X_i] = p \) and variance \(\text{var}[X_i] = p(1-p) \)
 - For sufficiently large \(n \) \(X \sim \mathcal{N}(np, np(1-p)) \)
Conditional probabilities

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Conditional pmf and cdf for discrete RVs

- Recall definition of conditional probability for events E and F

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

⇒ Change in likelihoods when information is given, renormalization

- **Def:** Conditional pmf of RV X given Y is (both RVs discrete)

$$p_{X \mid Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

- Which we can rewrite as

$$p_{X \mid Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{XY}(x, y)}{p_Y(y)}$$

⇒ Pmf for RV X, given parameter y ("Y not random anymore")

- **Def:** Conditional cdf is (a range of X conditioned on a value of Y)

$$F_{X \mid Y}(x \mid y) = P(X \leq x \mid Y = y) = \sum_{z \leq x} p_{X \mid Y}(z \mid y)$$
Conditional pmf example

- Consider independent Bernoulli RVs Y and Z, define $X = Y + Z$
- Q: Conditional pmf of X given Y? For $X = 0$, $Y = 0$

$$p_{X|Y}(X = 0 \mid Y = 0) = \frac{P(X = 0, Y = 0)}{P(Y = 0)} = \frac{(1 - p)^2}{1 - p} = 1 - p$$

- Or, from joint and marginal pmfs (just a matter of definition)

$$p_{X|Y}(X = 0 \mid Y = 0) = \frac{p_{XY}(0, 0)}{p_Y(0)} = \frac{(1 - p)^2}{1 - p} = 1 - p$$

- Can compute the rest analogously

$$p_{X|Y}(0\mid 0) = 1 - p, \quad p_{X|Y}(1\mid 0) = p, \quad p_{X|Y}(2\mid 0) = 0$$
$$p_{X|Y}(0\mid 1) = 0, \quad p_{X|Y}(1\mid 1) = 1 - p, \quad p_{X|Y}(2\mid 1) = p$$
Conditioning on sum of Poisson RVs

- Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2
- Define $X = Y + Z$. Q: Conditional pmf of Y given X?

$$p_{Y|X}(Y = y \mid X = x) = \frac{P(Y = y, X = x)}{P(X = x)} = \frac{P(Y = y)P(Z = x - y)}{P(X = x)}$$

- Used Y and Z independent. Now recall X is Poisson, $\lambda = \lambda_1 + \lambda_2$

$$p_{Y|X}(Y = y \mid X = x) = \frac{e^{-\lambda_1} \lambda_1^y}{y!} \frac{e^{-\lambda_2} \lambda_2^{x-y}}{(x-y)!} \left[\frac{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^x}{x!} \right]^{-1}$$

$$= \frac{x!}{y!(x-y)!} \frac{\lambda_1^y \lambda_2^{x-y}}{(\lambda_1 + \lambda_2)^x}$$

$$= \binom{x}{y} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^y \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{x-y}$$

\Rightarrow Conditioned on $X = x$, Y is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$
Conditional pdf and cdf for continuous RVs

▶ **Def:** Conditional pdf of RV X given Y is (both RVs continuous)

\[
f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)}
\]

▶ For motivation, define intervals $\Delta x = [x, x+dx]$ and $\Delta y = [y, y+dy]$.

⇒ Approximate conditional probability $P \left(X \in \Delta x \mid Y \in \Delta y \right)$ as

\[
P \left(X \in \Delta x \mid Y \in \Delta y \right) = \frac{P \left(X \in \Delta x, Y \in \Delta y \right)}{P \left(Y \in \Delta y \right)} \approx \frac{f_{XY}(x, y)dxdy}{f_Y(y)dy}
\]

▶ From definition of conditional pdf it follows

\[
P \left(X \in \Delta x \mid Y \in \Delta y \right) \approx f_{X|Y}(x \mid y)dx
\]

⇒ What we would expect of a density

▶ **Def:** Conditional cdf is

\[
F_{X|Y}(x) = \int_{-\infty}^{x} f_{X|Y}(u \mid y)du
\]
Communications channel example

- Random message (RV) Y, transmit signal y (realization of Y)
- Received signal is $x = y + z$ (z realization of random noise)
 - Model communication system as a relation between RVs
 \[X = Y + Z \]
 - Model additive noise as $Z \sim \mathcal{N}(0, \sigma^2)$ independent of Y
- Q: Conditional pdf of X given Y? Try the definition
 \[f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)} = ? \]
 - Problem is we don’t know $f_{XY}(x, y)$. Have to calculate
- Computing conditional probs. typically easier than computing joints
Communications channel example (continued)

- If \(Y = y \) is given, then “\(Y \) not random anymore”
 \[\Rightarrow \text{It is still random in reality, we are thinking of it as given} \]

- If \(Y \) were not random, say \(Y = y \) with \(y \) given then \(X = y + Z \)
 \[\Rightarrow \text{Cdf of } X \text{ given } Y = y \text{ now easy (use } Y \text{ and } Z \text{ independent)} \]
 \[P(X \leq x \mid Y = y) = P(y + Z \leq x \mid Y = y) = P(Z \leq x - y) \]

- But since \(Z \) is normal with zero mean and variance \(\sigma^2 \)
 \[P(X \leq x \mid Y = y) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x-y} e^{-z^2/2\sigma^2} \, dz \]
 \[= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-(z-y)^2/2\sigma^2} \, dz \]
 \[\Rightarrow X \text{ given } Y = y \text{ is normal with mean } y \text{ and variance } \sigma^2 \]
Digital communications channel

- Conditioning is a common tool to compute probabilities

- Message 1 (w.p. p) ⇒ Transmit $Y = 1$
- Message 2 (w.p. q) ⇒ Transmit $Y = -1$
- Received signal ⇒ $X = Y + Z$

- Decoding rule ⇒ $\hat{Y} = 1$ if $X \geq 0$, $\hat{Y} = -1$ if $X < 0$
 ⇒ Errors: ● to the left of 0 and ● to the right

\[\hat{Y} = -1 \quad \rightarrow \quad \hat{Y} = 1 \]

\[X = Y + Z \quad Z \sim \mathcal{N}(0, \sigma^2) \]

- Q: What is the probability of error, $P_e := P(\hat{Y} \neq Y)$?
From communications channel example we know

⇒ If \(Y = 1 \) then \(X \mid Y = 1 \sim \mathcal{N}(1, \sigma^2) \). Conditional pdf is

\[
f_{X \mid Y}(x \mid 1) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-1)^2}{2\sigma^2}}
\]

⇒ If \(Y = -1 \) then \(X \mid Y = -1 \sim \mathcal{N}(-1, \sigma^2) \). Conditional pdf is

\[
f_{X \mid Y}(x \mid -1) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x+1)^2}{2\sigma^2}}
\]
\[
P_e = \Pr(\hat{Y} \neq Y \mid Y = 1) \Pr(Y = 1) + \Pr(\hat{Y} \neq Y \mid Y = -1) \Pr(Y = -1)
\]
\[
= \Pr(\hat{Y} = -1 \mid Y = 1) \: p \quad + \quad \Pr(\hat{Y} = 1 \mid Y = -1) \: q
\]

According to the decision rule
\[
P_e = \Pr(X < 0 \mid Y = 1) \: p + \Pr(X \geq 0 \mid Y = -1) \: q
\]

But \(X\) given \(Y\) is normally distributed, then
\[
P_e = \frac{p}{\sqrt{2\pi\sigma}} \int_{-\infty}^{0} e^{-(x-1)^2/2\sigma^2} \, dx + \frac{q}{\sqrt{2\pi\sigma}} \int_{0}^{\infty} e^{-(x+1)^2/2\sigma^2} \, dx
\]
Conditional expectation

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Definition of conditional expectation

▶ **Def:** For continuous RVs \(X, Y \), conditional expectation is

\[
\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \, dx
\]

▶ **Def:** For discrete RVs \(X, Y \), conditional expectation is

\[
\mathbb{E}[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)
\]

▶ Defined for given \(y \) \(\Rightarrow \mathbb{E}[X \mid Y = y] \) is a number

\(\Rightarrow \) All possible values \(y \) of \(Y \) \(\Rightarrow \) random variable \(\mathbb{E}[X \mid Y] \)

▶ \(\mathbb{E}[X \mid Y] \) a function of the RV \(Y \), hence itself a RV

\(\Rightarrow \mathbb{E}[X \mid Y = y] \) value associated with outcome \(Y = y \)

▶ If \(X \) and \(Y \) independent, then \(\mathbb{E}[X \mid Y] = \mathbb{E}[X] \)
Conditional expectation example

- Consider independent Bernoulli RVs Y and Z, define $X = Y + Z$
- Q: What is $\mathbb{E}[X \mid Y = 0]$? Recall we found the conditional pmf

$$p_{X \mid Y}(0 \mid 0) = 1 - p, \quad p_{X \mid Y}(1 \mid 0) = p, \quad p_{X \mid Y}(2 \mid 0) = 0$$

$$p_{X \mid Y}(0 \mid 1) = 0, \quad p_{X \mid Y}(1 \mid 1) = 1 - p, \quad p_{X \mid Y}(2 \mid 1) = p$$

- Use definition of conditional expectation for discrete RVs

$$\mathbb{E}[X \mid Y = 0] = \sum_x x p_{X \mid Y}(x \mid 0)$$

$$= 0 \times (1 - p) + 1 \times p + 2 \times 0 = p$$
Iterated expectations

- If $E[X \mid Y]$ is a RV, can compute expected value $E_Y[E_X[X \mid Y]]$
 Subindices clarify innermost expectation is w.r.t. X, outermost w.r.t. Y

- **Q:** What is $E_Y[E_X[X \mid Y]]$? Not surprisingly $\Rightarrow E[X] = E_Y[E_X[X \mid Y]]$

- Show for discrete RVs (write integrals for continuous)

 $$E_Y[E_X[X \mid Y]] = \sum_y E_X[X \mid Y = y] p_Y(y) = \sum_y \left[\sum_x p_X|Y(x \mid y) \right] p_Y(y)$$

 $$= \sum_x \left[\sum_y p_X|Y(x \mid y) p_Y(y) \right] = \sum_x \left[\sum_y p_{XY}(x, y) \right]$$

 $$= \sum_x x p_X(x) = E[X]$$

- Offers a useful method to compute expected values
 \Rightarrow Condition on $Y = y$ $\Rightarrow X \mid Y = y$
 \Rightarrow Compute expected value over X for given y $\Rightarrow E_X[X \mid Y = y]$
 \Rightarrow Compute expected value over all values y of Y $\Rightarrow E_Y[E_X[X \mid Y]]$
Iterated expectations example

Consider a probability class in some university

- Seniors get an $A = 4$ w.p. 0.5, $B = 3$ w.p. 0.5
- Juniors get a $B = 3$ w.p. 0.6, $C = 2$ w.p. 0.4
- An exchange student is a senior w.p. 0.7, and a junior w.p. 0.3

Q: Expectation of $X = \text{exchange student’s grade}$?

Start by conditioning on standing

\[
\mathbb{E} [X \mid \text{Senior}] = 0.5 \times 4 + 0.5 \times 3 = 3.5 \\
\mathbb{E} [X \mid \text{Junior}] = 0.6 \times 3 + 0.4 \times 2 = 2.6
\]

Now sum over standing’s probability

\[
\mathbb{E} [X] = \mathbb{E} [X \mid \text{Senior}] P (\text{Senior}) + \mathbb{E} [X \mid \text{Junior}] P (\text{Junior}) \\
= 3.5 \times 0.7 + 2.6 \times 0.3 = 3.23
\]
Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2.

Define $X = Y + Z$. What is $\mathbb{E}[Y \mid X = x]$?

\Rightarrow We found $Y \mid X = x$ is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$, hence

$$\mathbb{E}[Y \mid X = x] = \frac{x\lambda_1}{\lambda_1 + \lambda_2}$$

Now use iterated expectations to obtain $\mathbb{E}[Y]$

\Rightarrow Recall X is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$

$$\mathbb{E}[Y] = \sum_{x=0}^{\infty} \mathbb{E}[Y \mid X = x] \ p_X(x) = \sum_{x=0}^{\infty} \frac{x\lambda_1}{\lambda_1 + \lambda_2} \ p_X(x)$$

$$= \frac{\lambda_1}{\lambda_1 + \lambda_2} \mathbb{E}[X] = \frac{\lambda_1}{\lambda_1 + \lambda_2} (\lambda_1 + \lambda_2) = \lambda_1$$

Of course, since Y is Poisson with parameter λ_1
Conditioning to compute expectations

- As with probabilities conditioning is useful to compute expectations
 \[\Rightarrow \text{Spreads difficulty into simpler problems (divide and conquer)} \]

Example

- A baseball player scores \(X_i \) runs per game
 \[\Rightarrow \text{Expected runs are } E[X_i] = E[X] \text{ independently of game} \]

- Player plays \(N \) games in the season. \(N \) is random (playoffs, injuries?)
 \[\Rightarrow \text{Expected value of number of games is } E[N] \]

- What is the expected number of runs in the season?
 \[\Rightarrow E\left[\sum_{i=1}^{N} X_i \right] \]

- Both \(N \) and \(X_i \) are random, and here also assumed independent
 \[\Rightarrow \text{The sum } \sum_{i=1}^{N} X_i \text{ is known as compound RV} \]
Sum of random number of random quantities

Step 1: Condition on $N = n$ then

$$\left[\sum_{i=1}^{N} X_i \mid N = n \right] = \sum_{i=1}^{n} X_i$$

Step 2: Compute expected value w.r.t. X_i, use N and the X_i independent

$$\mathbb{E}_{X_i} \left[\sum_{i=1}^{N} X_i \mid N = n \right] = \mathbb{E}_{X_i} \left[\sum_{i=1}^{n} X_i \mid N = n \right] = \mathbb{E}_{X_i} \left[\sum_{i=1}^{n} X_i \right] = n \mathbb{E} [X]$$

\Rightarrow Third equality possible because n is a number (not a RV)

Step 3: Compute expected value w.r.t. values n of N

$$\mathbb{E}_N \left[\mathbb{E}_{X_i} \left[\sum_{i=1}^{N} X_i \mid N \right] \right] = \mathbb{E}_N \left[N \mathbb{E} [X] \right] = \mathbb{E} [N] \mathbb{E} [X]$$

Yielding result $\Rightarrow \mathbb{E} \left[\sum_{i=1}^{N} X_i \right] = \mathbb{E} [N] \mathbb{E} [X]$
Ex: Suppose X is a geometric RV with parameter p

- Calculate $\mathbb{E}[X]$ by conditioning on $Y = \mathbb{I}\{\text{“first trial is a success”}\}$
 - If $Y = 1$, then clearly $\mathbb{E}[X \mid Y = 1] = 1$
 - If $Y = 0$, independence of trials yields $\mathbb{E}[X \mid Y = 0] = 1 + \mathbb{E}[X]$

- Use iterated expectations

\[
\mathbb{E}[X] = \mathbb{E}[X \mid Y = 1]P(Y = 1) + \mathbb{E}[X \mid Y = 0]P(Y = 0)
\]

\[
= 1 \times p + (1 + \mathbb{E}[X]) \times (1 - p)
\]

- Solving for $\mathbb{E}[X]$ yields

\[
\mathbb{E}[X] = \frac{1}{p}
\]

- Here, direct approach is straightforward (geometric series, derivative)

\Rightarrow Oftentimes simplifications can be major
The trapped miner example

- A miner is trapped in a mine containing three doors
- At all times $n \geq 1$ while still trapped
 - The miner chooses a door $D_n = j$, $j = 1, 2, 3$
 - Choice of door D_n made independently of prior choices
 - Equally likely to pick either door, i.e., $P(D_n = j) = 1/3$
- Each door leads to a tunnel, but only one leads to safety
 - Door 1: the miner reaches safety after two hours of travel
 - Door 2: the miner returns back after three hours of travel
 - Door 3: the miner returns back after five hours of travel
- Let X denote the total time traveled till the miner reaches safety
- Q: What is $E[X]$?
The trapped miner example (continued)

- Calculate \(\mathbb{E}[X] \) by conditioning on first door choice \(D_1 \)
 - If \(D_1 = 1 \), then 2 hours and out, i.e., \(\mathbb{E}[X \mid D_1 = 1] = 2 \)
 - If \(D_1 = 2 \), door choices independent so \(\mathbb{E}[X \mid D_1 = 2] = 3 + \mathbb{E}[X] \)
 - Likewise for \(D_1 = 3 \), we have \(\mathbb{E}[X \mid D_1 = 3] = 5 + \mathbb{E}[X] \)

- Use iterated expectations

\[
\mathbb{E}[X] = \sum_{j=1}^{3} \mathbb{E}[X \mid D_1 = j] \cdot P(D_1 = j) = \frac{1}{3} \sum_{j=1}^{3} \mathbb{E}[X \mid D_1 = j]
\]

\[
= \frac{2 + 3 + \mathbb{E}[X] + 5 + \mathbb{E}[X]}{3} = \frac{10 + 2\mathbb{E}[X]}{3}
\]

- Solving for \(\mathbb{E}[X] \) yields

\[
\mathbb{E}[X] = 10
\]

- You will solve it again using compound RVs in the homework
Conditional variance formula

Def: The conditional variance of X given $Y = y$ is

$$\text{var}[X|Y = y] = \mathbb{E} \left[(X - \mathbb{E}[X|Y = y])^2 | Y = y \right]$$

$$= \mathbb{E}[X^2|Y = y] - (\mathbb{E}[X|Y = y])^2$$

\Rightarrow var $[X|Y]$ a function of RV Y, value for $Y = y$ is var $[X|Y = y]$

Calculate var $[X]$ by conditioning on $Y = y$. Quick guesses?

\Rightarrow var $[X] \neq \mathbb{E}_Y[\text{var}_X(X|Y)]$

\Rightarrow var $[X] \neq \text{var}_Y[\mathbb{E}_X(X|Y)]$

Neither. Following conditional variance formula is the correct way

$$\text{var}[X] = \mathbb{E}_Y[\text{var}_X(X|Y)] + \text{var}_Y[\mathbb{E}_X(X|Y)]$$
Proof.

- Start from the first summand, use linearity, iterated expectations
 \[
 \mathbb{E}_Y[\text{var}_X(X \mid Y)] = \mathbb{E}_Y \left[\mathbb{E}_X(X^2 \mid Y) - (\mathbb{E}_X(X \mid Y))^2 \right] \\
 = \mathbb{E}_Y \left[\mathbb{E}_X(X^2 \mid Y) \right] - \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right] \\
 = \mathbb{E} \left[X^2 \right] - \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right]
 \]

- For the second term use variance definition, iterated expectations
 \[
 \text{var}_Y[\mathbb{E}_X(X \mid Y)] = \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right] - (\mathbb{E}_Y[\mathbb{E}_X(X \mid Y)])^2 \\
 = \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right] - (\mathbb{E} [X])^2
 \]

- Summing up both terms yields (blue terms cancel)
 \[
 \mathbb{E}_Y[\text{var}_X(X \mid Y)] + \text{var}_Y[\mathbb{E}_X(X \mid Y)] = \mathbb{E} \left[X^2 \right] - (\mathbb{E} [X])^2 = \text{var} [X]
 \]

\[
\]

\[
\]
Variance of a compound RV

- Let X_1, X_2, \ldots be i.i.d. RVs with $\mathbb{E}[X_1] = \mu$ and $\text{var}[X_1] = \sigma^2$
- Let N be a nonnegative integer-valued RV independent of the X_i
- Consider the compound RV $S = \sum_{i=1}^{N} X_i$. What is $\text{var}[S]$?

The conditional variance formula is useful here

- Earlier, we found $\mathbb{E}[S|N] = N\mu$. What about $\text{var}[S|N = n]$?

$$\text{var}\left[\sum_{i=1}^{N} X_i|N = n\right] = \text{var}\left[\sum_{i=1}^{n} X_i|N = n\right] = \text{var}\left[\sum_{i=1}^{n} X_i\right] = n\sigma^2$$

$\Rightarrow \text{var}[S|N] = N\sigma^2$. Used independence of N and the i.i.d. X_i

- The conditional variance formula is $\text{var}[S] = \mathbb{E}[N\sigma^2] + \text{var}[N\mu]$

Yielding result $\Rightarrow \text{var}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}[N] \sigma^2 + \text{var}[N] \mu^2$
Glossary

- Markov’s inequality
- Chebyshev’s inequality
- Limit of a sequence
- Almost sure convergence
- Convergence in probability
- Mean-square convergence
- Convergence in distribution
- I.i.d. random variables
- Sample average
- Centering and scaling

- Law of large numbers
- Central limit theorem
- Conditional distribution
- Communication channel
- Probability of error
- Conditional expectation
- Iterated expectations
- Expectations by conditioning
- Compound random variable
- Conditional variance