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a b s t r a c t

Classical lumped parameter electromechanics successfully models most observable phe-
nomenology of droplet-based electrowetting and liquid dielectrophoresis. The key to this
unifying approach is to express capacitance in terms of the proper mechanical variable.
While this capability is easily revealed in modeling microfluidic schemes, where the elec-
trical force drives center-of-mass motions of the liquid, lumped parameter electromechan-
ics also can be adapted for devices such as the liquid lens, where a liquid mass is made to
change its shape and is characterized by observable changes in the apparent, liquid/solid
contact angle. Because capacitance is usually insensitive to contact angle, irregularities
of the liquid configuration, and fringing fields, electromechanical modeling is easy to
use. For the case of liquids of finite electrical conductivity, a capacitive- and resistive-based
model can be used to predict frequency-dependent effects.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Droplet-based microfluidic schemes exploiting the electrowetting (EWOD = electrowetting-on-dielectric) and liquid
dielectrophoretic (DEP) force mechanisms show promise in many applications. Nowadays, increasingly complex electrode
structures for such systems are contemplated, so the need to develop efficient, predictive models for their performance is
growing. The prevalent way to calculate the electrical force acting on a droplet in an EWOD device is to treat the effect as
an enhancement of the surface force resulting from the voltage-induced change in the contact angle. But there are problems
with this approach. First of all, contact angle modulation is not the ‘‘prime mover” responsible for center-of-mass droplet
motion. It is, in fact, more accurate to regard (i) changes in the contact angle and (ii) center-of-mass motions as distinct
observables, both induced by the distributed electrostatic force acting on the free surface of the liquid. In the localized region
just above the contact line, the fringing field induces free electric charge upon the surface of the conductive liquid and then
exerts a net force on these charges. Second, the contact angle approach grows unwieldy as geometries become more com-
plex. On the other hand, the electromechanical model, based on variable capacitance, is usually easy to implement and offers
some opportunity for effective, reduced-order modeling. Even for very complex geometries, advantage may be taken of
capacitance calculation tools built into modern finite element computational software to determine the electrical force.
Third, in any microfluidic device where the intention is to exploit frequency as an independent control variable, the contact
angle model fails completely because of difficulties obtaining a useable relationship between contact angle, frequency, and
liquid conductivity.

The objective of this work is to extend the electromechanical interpretation of electrowetting (Jones, 2005) to more prac-
tical electrode geometries, such as EWOD droplet transport structures. The lumped parameter, capacitive model is robust
and easy to use. In addition, the model is quite amenable to predicting the frequency-dependent behavior of simple, yet
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practical EWOD geometries using an RC circuit model to establish the voltage distribution. Contact angle-based models do
not possess such a capability.

2. The sessile droplet

By far, the most familiar demonstration of electrowetting is the change in shape of a sessile, conducting liquid droplet
resting on a dielectric-coated plane electrode when voltage is applied between the droplet and the electrode, see Fig. 1.
The strong, localized, electrostatic force acting upon the free surface of the droplet above the contact line causes it to spread,
thus increasing its area coverage of the electrode. It is of course convenient to quantify the phenomenon in terms of the ob-
servable, voltage-dependent decrease of the apparent liquid/solid contact angle h(v). Unfortunately, this point of view has
evolved into the questionable physical interpretation that the spreading is due to the change in the contact angle, rather than
merely a parallel consequence of the electrostatic force acting near the contact line. The electromechanical analysis summa-
rized below reveals that a capacitive model correctly predicts the change in shape of the droplet and does so without making
any direct reference to contact angle.

For convenience, we assume the droplet is small enough so that its surface retains the shape of a spherical cap. The valid-
ity of this approximation is established by the dimensionless Bond number Bo, which compares the capillary and gravita-
tional forces.

Bo ¼ qLgh2
=cLV ð1Þ

where h is the height of cap, cLV is liquid/vapor surface energy per unit area, qL is liquid density, and g = 9.81 m/s2. If Bo� 1,
capillarity overwhelms gravity and the free surface of the droplet is essentially spherical. Folding in the constraint that the
droplet has fixed volume V yields a convenient set of relationships between height h, radius of the contact a, radius of the
spherical cap r, and contact angle h, as defined in Fig. 1 (Berthier, 2008).

h3 þ 3a2h� 6V=p ¼ 0 ð2aÞ
r ¼ ðh2 þ a2Þ=2h ð2bÞ

cosðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=rÞ2

q
ð2cÞ

Appendix A shows that Eq. (2a), cubic in h, has a single real root. While any of the geometrical quantities defined in Fig. 1 for
the spherical cap geometry might be designated as the mechanical state variable for a virtual work-based, electromechanical
formulation, the radius of the circular contact, a, is probably the best choice because it identifies physically reasonable cap-
illary and electrostatic forces per unit length of contact line.

A useful, preliminary exercise is to consider the hydrostatics of the droplet in the absence of the electrical force, that is,
v = 0. The spherical surface area and the contact area of the sessile droplet, ALV and ALS, respectively, are

ALVðaÞ ¼ 2prðaÞhðaÞ and ALSðaÞ ¼ pa2 ð3Þ

Then, the total surface energy of the system is

WcðaÞ ¼ cLVALV þ cLSALS þ cSVðAE � ALSÞ ð4Þ

where subscripts LV, LS, and SV refer, respectively, to the liquid/vapor, liquid/solid, and solid/vapor interfaces, and AE rep-
resents the constant, total area of the dielectric-coated plane electrode. As already suggested, choice of a as the mechanical
variable, while arbitrary, allows direct computation of an effective interfacial force per unit length of contact line fc.

V

electrode

h

ho

dielectric 
coating:

d,κd

a

r
°

°°θ

Fig. 1. Side view of a sessile droplet resting on the dielectrically coated electrode with h, r, a, and h defined. The droplet, which is conducting, acts as the
deformable electrode of a capacitor, subject to the constraints of constant volume and a spherical cap shape. Variables identified by the subscript ‘‘o”
represent values when voltage v = 0.
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f cðaÞ ¼ �1
2pa

oWc

oa
ð5Þ

Using Eq. (4) and the definitions of the geometrical factors in this equation, we obtain

f cðaÞ ¼ cSV � cLS � cLV cos h ð6Þ

The familiar Young equation (see de Gennes et al., 2004), relating the equilibrium contact angle hc to the surface energies of
the three interfaces, results from imposing the equilibrium condition, fc = 0.

cLV cos hc þ cLS � cSV ¼ 0 ð7Þ

Note that, while the above derivation is based on the approximation that the sessile droplet has the shape of a spherical cap,
Eq. (7) is in fact far more general. Refer to Henriksson and Eriksson (2004) for more about meniscus shape.

3. Electromechanics of droplet deformation

In response to the electrostatic force, the droplet changes shape and spreads. We conceptualize the lumped parameter
electromechanical model with the conservative system shown in Fig. 2. Together, the conducting droplet and the dielectri-
cally-coated plane electrode supporting it form capacitance C, which can be expressed in terms of droplet contact area
ALS = pa2. In most practical electrowetting applications, the dielectric coating is very thin, d� a, justifying neglect of fringing
fields. Thus,

CðaÞ � jdeoALS

d
¼ jdeopa2

d
ð8Þ

Eq. (8) is actually correct for any cylindrically symmetric shape assumed by the droplet, and thus the generality of Eq. (7) is
extended. If a � d, the fringing fields at the contact line can no longer be ignored, and a correction factor is needed (Plonsey
and Collin, 1961).

CcorrectedðaÞ �
jdeo

d
½pa2 þ 2ad lnð2pa=dÞ� ð9Þ

Imposing the energy conservation condition on the coupling shown in Fig. 2 gives

dWe ¼ tdq� 2paf eda ð10Þ

where q = C(a)t is the electric charge and We(q,a) is the electrical energy storage of the coupling. The electrical force per unit
length of contact line, fe, is interpreted as acting radially outward and parallel to the plane electrode at the contact line.

In EWOD devices, voltage t rather than charge q is constrained, so it becomes convenient to change state variables from
(q,a) to (v,a) using a Legendre transform. Following Woodson and Melcher (1968), we define a type of free energy called the
coenergy We

0
(v,a).

WeþWe0 ¼ vq ð11Þ

Using Eq. (11) in Eq. (10) gives

dWe0 ¼ qdtþ 2paf eda ð12Þ

Invoking a crucial, defining condition on the force of electrical origin, that is, fe(v = 0,a) = 0, Eq. (12) may be integrated in (v,a)
space to obtain an expression for We

0
(v,a). The familiar result is

We0ðt; aÞ ¼ 1
2

CðaÞt2 ð13Þ

The analytical nature of this function means that

f e ¼ 1
2pa

oWe0

oa

����
t¼constant

¼ 1
2pa

t2

2
dC
da

ð14Þ

f e

a
+

-

conservative

coupling: We
v

q

Fig. 2. The conservative electromechanical coupling, with electrical and mechanical ports on the left and right, respectively, is used to evaluate the
distributed force of electrical origin fe acting radially around the edge of the droplet and causing it to spread.
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The force of electrical origin per unit length of contact line is thus determined by the dependence of the system capacitance
upon the mechanical variable a.

f e ¼ jdeo

2d
t2 ð15Þ

It is crucial to recognize that this force, while directly attributable to the distributed electrical forces near the contact line,
has been determined here with no reference to the fringing field. In fact, the capacitance expression used, Eq. (8), explicitly
ignores fringing. To gain some perspective about this apparent paradox, it is only necessary to refer to classical thermody-
namics, another energy-based discipline, which for example successfully predicts most of the important temperature, pres-
sure, and volume related behavior of gases without detailed knowledge of gas kinetics. Berge’s original analysis (Berge, 1993)
is also based on an energy argument and likewise avoids the need to know the details of the fringing field.

4. Electromechanical equilibrium of sessile droplet

For the electrically stressed droplet to be in equilibrium, fe + fc = 0. After some algebraic manipulation, this equilibrium
reduces to

cos hðtÞ ¼ cos hc þ
jdeot2

2dcLV
ð16Þ

which is Berge’s equation for voltage-dependent, apparent contact angle on a dielectric-coated electrode (Berge, 1993).
Alternatively, one may define a potential energy function, U(v,a) �Wc(a) �We

0
(v,a), in which case Eq. (16) results from set-

ting oU/oa = 0.
Obtaining Eq. (16) directly from minimizing a potential energy function teaches us that the electromechanical approach is

fully consistent with previously published analyses of the capillary behavior of sessile droplets. It is important to reiterate
that the above derivation of the force of electrical origin fe requires no knowledge of either the contact angle of the droplet or
its hydrostatic profile. Furthermore, a force calculation based on the Maxwell stress tensor, which likewise may be per-
formed without knowing any details of the liquid profile close to the dielectric-coated electrode, yields exactly the same re-
sult (Jones, 2002,).

5. Electrowetting with two coplanar electrodes

Consider a pair of very thin, coplanar electrodes of identical width w, separated by a uniform gap g and coated with a
dielectric layer of thickness d and dielectric constant jd. Atop the structure and straddling these electrodes is a conducting
liquid droplet, see Fig. 3. For present purposes, this droplet is assumed to be two-dimensional, i.e., uniform across the elec-
trode width w, though this approximation is voided in the next section. Voltage t is applied between the two electrodes. The
droplet is electrically floating; capacitive voltage division determines its electrostatic potential. To determine the x-directed
force acting on the droplet using lumped parameter electromechanics, the only requirement is the system capacitance. Again
neglecting fringing fields, the capacitances per unit width on the left and right sides of the droplet are, respectively,

C1ðxÞ ¼ jdeoðL� xÞ=d and C2ðxÞ ¼ jdeoðLþ xÞ=d ð17Þ

Because the droplet is not grounded, the net capacitance is the series combination of C1 and C2.

CðxÞ ¼ C1C2

C1 þ C2
¼ jdeo

2Ld
ðL2 � x2Þ ð18Þ

substrate
gelectrode 1 electrode 2

f   e
x

v

L+xL-x

dielectric 
coating:

d,κ d

1                                                                                      2θ θ

Fig. 3. Side view of basic coplanar electrode geometry of width w relevant to electrowetting-based microfluidic conductive droplet actuation and transport.
Initially, the droplet is assumed to be two-dimensional, but this simplification is readily eliminated, as explained in the analysis accompanying Fig. 4.
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We use coenergy per unit width, We
0
= C(x)t2/2, to calculate the force of electrical origin.

f e
x ¼

oWe0

ox

����
t¼constant

¼ t2

2
dC
dx
¼ �jdeot2

2Ld
x ð19Þ

Eq. (19) is readily checked against the commonly employed contact angle-based approach, the starting point being the force
per unit length of contact line from Berge’s equation, from Berthier (2008, p. 174),

f EW
x ¼

jdeot2
layer

2d
ð20Þ

Capacitive voltage division determines the voltage drops across the layers on the left and right sides.

t1 ¼
C2

C1 þ C2
t ¼ Lþ x

2L
t and t2 ¼

C1

C1 þ C2
t ¼ L� x

2L
t ð21Þ

The total electrical force is the vector sum of the terms on the left and right sides.

f EW
x ¼ �jdeot2

1

2d
þ jdeot2

2

2d
ð22Þ

Using the expressions for t1 and t2 from Eq. (21) in Eq. (22) reproduces Eq. (19), the result already obtained using lumped
parameter electromechanics.

Note that lumped parameter electromechanical analysis avoids the need to deal with details of the quantitative distribu-
tion of voltage between the two sides, as well as the liquid profile close to the contact line or the fringing field. In the next
section, it is shown that the capacitive modeling approach is sufficiently robust to handle a droplet of arbitrary profile.

6. Three-dimensional droplets

The droplets in an electrowetting-based droplet transport structure seldom if ever conform to the 2D model employed
above. Instead, they have a sometimes slightly irregular but generally rectangular outline with rounded corners as illustrated
in Fig. 4. To calculate the force acting on the droplet using Eq. (20) directly would seem to require knowledge of this profile;
however, Berthier (2008) has shown that the total force exerted on the portion of a droplet covering an electrode depends
only on the electrode width w and is independent of shape. This result is easily re-confirmed using the capacitive/electro-
mechanical approach. Fig. 4 shows the top view of an irregular droplet, which straddles the two electrodes just like the
one in Fig. 3. It is evident that, if the shape remains fixed during translational motion along the structure in the x direction,
the derivatives of capacitance, dC1/dx and dC2/dx, are independent of position, equal in magnitude, and opposite in sign.

dC1

dx
¼ �dC2

dx
¼ �jdeo=d ð23Þ

The two contributions to the electromechanical force may now be computed.

f e
x ¼

t2
1

2
dC1

dx
þ t2

2

2
dC2

dx
ð24Þ

Substituting the expressions for t1 and t2 from Eq. (21) into Eq. (24) yields Eq. (19), the result obtained using the simpler 2D
assumption, thus showing that droplet outline has no influence on the net electromechanical force.

7. Frequency-dependent droplet electromechanics

The biggest advantage for the electromechanical modeling approach to droplet-based EWOD accrues for variable fre-
quency AC voltage excitation. It is by now well-established that the electrical force exerted on semi-conductive liquids, such

A1 A2

dA2 = wdxdA1 = -wdx

w

droplet of arbitrary shape

electrode electrode

f  e
x

dx

Fig. 4. Top view showing outline of a conducting liquid droplet bridging two coplanar electrodes of identical width w. Even if the droplet profile is irregular,
as long as its shape remains fixed as it moves in the x direction, then dA1 = �dA2 and dC1/dx = �dC2/dx. With the constant shape constraint, the net force is
independent of the droplet outline.
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as DI water, many biological media, ethylene glycol, as well as some alcohols, having electrical conductivities r � 10�5 to
10�1 S/m, exhibit strong frequency dependence (Jones et al., 2003, 2004, 2005). This dependence manifests itself over virtu-
ally the entire practical range of driving voltage frequencies: �102 Hz to �1 MHz. Behavior at low frequency corresponds to
electrowetting (EWOD) and at high frequency to liquid dielectrophoresis (DEP). Here, a modeling approach based on contact
angle, Eq. (22), or any sort of generalization of Berge’s equation, Eq. (16), must falter because of the great difficulty of obtain-
ing a simple, frequency-dependent predictive relationship for the apparent contact angle. This difficulty stems inevitably
from the finite conductivity of the liquid; for one thing, it is virtually impossible to formulate an unambiguous definition
for the droplet-to-plane-electrode voltage that accounts for frequency. More particularly, the electric field and thus the elec-
trostatic energy are not longer concentrated in the dielectric layer under the droplet.

The electromechanical method circumvents such difficulties by using an RC circuit model to determine the distribution of
the voltage. Assume the voltage is of the sinusoidal AC form t(t) = Re[vejxt], where v is the phasor voltage, j ¼

ffiffiffiffiffiffiffi
�1
p

, x is ra-
dian frequency, and t is time. Further, assume that x exceeds the frequency of any observable fluid surface disturbances. In
this case, we need consider only the time averages of electrical forces. See Fig. 5, which depicts the capacitances and con-
ductances of the circuit model. Note that a planar floating electrode has been added on top to simplify formulation of these
circuit quantities. As long as d� D < g, fringing fields will not be important. Then, the capacitances and conductances per
unit width are

Cw1 ¼ jweoðL� XÞ=D; Gw1 ¼ rwðL� XÞ=D; Cd1 ¼ jdeoðL� XÞ=d; ð25aÞ
Cw2 ¼ jweoðLþ XÞ=D; Gw2 ¼ rwðLþ XÞ=D; Cd2 ¼ jdeoðLþ XÞ=d; ð25bÞ

The distribution of voltage amongst the four capacitive elements is obtained using impedance division. The four phasor volt-
ages vw1, vd1, vw2, and vd2 across these elements are:

tw1;d1;w2;d2 ¼
Zw1;d1;w2;d2

Zw1 þ Zd1 þ Zw2 þ Zd2
t ð26Þ

where

Zw1 ¼
D

ðjxjweo þ rwÞðL� xÞ ; Zd1 ¼
d

ðjxjdeoÞðL� xÞ ð27aÞ

Zw2 ¼
D

ðjxjweo þ rwÞðLþ xÞ ; Zd2 ¼
d

ðjxjdeoÞðLþ xÞ ð27bÞ

are the complex impedances. The net, time-average force per unit width of the structure, hf e
x i, is the sum of four terms, one

corresponding to each of the four energy-storing capacitors.

hf e
x i ¼

1
2
jtw1j2

dCw1

dx
þ jtd1j2

dCd1

dx
þ jtw2j2

dCw2

dx
þ jtd2j2

dCd2

dx
þ

� �
ð28Þ

Combining the previous definitions into Eq. (28), we obtain a frequency-dependent, time-average force per unit width of the
electrodes acting on the droplet.

hf e
x i ¼ �

eot2

2
x
l

jw

D

xjde o
d

� �2

xeo
jw
D þ

jd
d

� �� 	2 þ rw
D

� �2

( )
þ jd

d

xjweoð Þ
D


 �2
þ rw

D

� �2

xeo
jw
D þ

jd
d

� �� 	2 þ rw
D

� �2

8><
>:

9>=
>;

2
64

3
75 ð29Þ

The electromechanical force, linearly dependent on x but independent of the outline of the droplet, is analogous to a mechan-
ical spring, exerting a frequency-dependent, restoring force that attracts the droplet toward stable equilibrium at the mid-
point, x = 0.

substrate
gelectrode 1 electrode 2

f e
x

V

dielectric 
coating

droplet of finite conductivity 

Cd1 Cd2

Cw1 Cw2Gw1 Gw2

upper (floating) electrode

D

Fig. 5. Side view showing circuit model for electromechanical actuation of semi-conductive liquid droplet. The upper plane electrode is electrically floating
and has a very thin dielectric layer that may be ignored in the RC circuit model.
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8. Frequency limits of time-average electromechanical force

To provide some physical interpretation for Eq. (29), it is instructive to obtain limiting expressions for the low frequency
(EWOD) and high frequency (DEP) values of the force hf e

x i.

hf e
x i ¼ �

jdeot2

2d
x
L
; x << rw=jweo ð30aÞ

hf e
x i ¼ �

eot2

2
jdjw=Dd

jd=dþ jw=D
x
L
; x >> rw=jweo ð30bÞ

These limits correspond to conditions where the semiconductive, dielectric liquid behaves effectively like a perfect conduc-
tor or a perfect insulator, respectively. As expected, Eq. (30a) is the same as Eq. (19), while Eq. (30b), independent of the li-
quid conductivity r, represents purely dielectrophoretic actuation.

9. Conclusion

The electromechanical derivations presented in this paper require no information about contact angle, liquid profile
above the contact line, or the fringing field. This is so despite the fact that the EWOD effect is due to the strong, localized
fringing field acting on the free surface of the liquid above the contact line. Lumped parameter electromechanics, based
on a virtual work approach, inherently does not require such detailed information to treat the observable, translational mo-
tions in microfluidic devices. Further, it does not even pinpoint the actual location where the electrical force is acting. There
is no need for it to do so. Accuracy and modeling efficiency depend only on having good information about derivatives of the
system capacitances and the distribution of voltage, obtainable from the appropriate circuit model. This observation is key to
understanding why the capacitive-based method works: net translational displacement of a liquid droplet affects the differ-
ential system capacitance, and this capacitance enjoys a linear relationship to energy. In more complex devices, there may
arise the need to compute capacitances by numerical means but, once obtained, such data can be folded directly into a
lumped parameter analysis, largely preserving the advantage of reduced-order modeling.

A further, compelling advantage of lumped parameter electromechanical treatment of electric-field-coupled, droplet-
based microfluidic structures is that it facilitates reduced-order modeling even when the liquid has finite electrical conduc-
tivity and when AC voltage excitation is used. The only requirement is an RC circuit model for the microfluidic device that
incorporates the dependence upon the correct mechanical variable of all capacitive and resistive elements. It is unlikely that
an approach based on contact angle modulation can achieve such generality.

This paper promotes use of lumped parameter electromechanics as a preferred modeling approach for microfluidic de-
vices involving manipulation and translational motion of droplets. Yet, as shown in the analysis of the sessile droplet
(Fig. 1), an electromechanical model also can be utilized to predict shape changes of virtually stationary liquid masses as long
as their geometry is not too complex. While this statement may be true, one may argue from an entirely utilitarian viewpoint
that the contact angle model still suffices as an engineering tool in certain applications such as the liquid lens (Berge and
Peseux, 2000).
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Appendix A
Eq. (2a) for h, the height of the spherical cap, fits the standard canonic form of a reduced cubic equation.

h3 þ ahþ b ¼ 0 ðA1Þ

where a = 3a2 and b = �6V/p. Further, it satisfies an inequality, b2/4 + a3/27 > 0, guaranteeing the existence of a single, real,
physical root (CRC, 1959). An analytical expression for this root is

hða;VÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
p

� 2

þ a3

s
3

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
p

� 2

þ a3

s
� 3V

p
3

vuut ðA2Þ

Eq. (A2) may be combined with Eqs. (2b) and (2c) to obtain various useful analytical expressions amongst h, r, a, h, and V.
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