Evaluating Complex MAC Protocols for Sensor Networks with APMC

Authors:
Michaël Cadilhac Thomas Hérault Richard Lassaigne
Sylvain Peyronnet1, Sébastien Tixeuil

Presenter:
Surjya Ray
Outline

- Introduction
 - Probabilistic Model Checking
 - Approximate Probabilistic Model Checking (APMC)
- Approximate Probabilistic Verification with APMC
 - Notations Used
 - Approximate Verification
 - Generic Approximation Algorithm
 - APMC Implementation
- Sketch of the MAC protocol
- Modeling
- Experiments
- Results
- Conclusion
Probabilistic Model Checking

- A method to analyze the correctness and performance of MAC protocols.
- Features of this method:
 - It constructs a mathematical model of the system.
 - Expresses the required specifications in some temporal language.
 - Represents all possible system configuration including state transition probabilities.
- Problem: The transition matrix can become extremely large; verification becomes intractable giving rise to State Space Explosion.
Approximate Probabilistic Model Checking

Solutions include

- Symbolic and Numerical Methods
- Approximate Probabilistic Model Checking (APMC)\[^1\]

Using APMC, we can

- Compute the approximate probability that a model satisfies a specification.
- Significantly lower the memory consumption (or make it constant in some cases).
Approximate Probabilistic Verification with APMC

Features of APMC

• Uses sampling of execution paths of the system.
• Based on a randomized algorithm.
• Approximates the satisfaction probability of a temporal specification.
• Can approximate with any degree of accuracy, the satisfaction probability of a specification.
• Can handle any probabilistic system that can be modeled as a discrete–time Markov Chain
Notations Used

- M: system represented as a discrete-time Markov Chain
- s: initial state of the system
- ψ: linear temporal formula (specification or property) to be proved
- $Path(s)$: set of execution paths whose first state is state s.
- $Prob[\psi]$: Probability measure of the set of paths satisfying the formula ψ in the set $Path(s)$. $Prob(.)$ is defined classically.
- $Path_k(s)$: Set of all paths of length $k > 0$ starting at s
- $Prob_k[\psi]$: Probability measure of the set of paths satisfying the formula ψ in the set $Path_k(s)$.
Approximate Verification

In order to estimate probability $p = \text{Prob}_k[\psi]$ of a property ψ, we

- generate the random paths of $\text{Prob}_k(s)$.
- compute a random variable X which estimates $p = \text{Prob}_k[\psi]$
- specify a real number $\varepsilon > 0$ which ensures that the estimation X is ε-good, meaning output value of the algorithm lies in $[p-\varepsilon, p+\varepsilon]$.
- also specify another real number $\delta > 0$, which ensures that the approximation is ε-good with confidence $(1-\delta)$.
Randomized Approximation Scheme (RAS) for p is a randomized algorithm A that takes as input a representation of the system M, a property ψ, two real numbers $\varepsilon, \delta > 0$ and produces a value X such that

$$\Pr X \in p - \varepsilon, p + \varepsilon \geq 1 - \delta$$

Goal: Estimate $p = \text{Prob}_k[\psi]$
Generic Approximation Algorithm

Generic approximation algorithm \mathcal{GAA}

Input: diagram, k, ψ, ϵ, δ

Output: approximation of $\text{Prob}_k[\psi]$

$N := \ln\left(\frac{2}{\delta}\right)/2\epsilon^2$; $A := 0$

For $i = 1$ to N do $A := A + \textbf{Random Path}(\text{diagram}, k, \psi)$

Return $Y = A/N$

where **Random Path** is

Random Path

Input: diagram, k, ψ

Output: samples a path π of length k and check formula ψ on π

(i) Generate a random path π of length k (with the diagram)

(ii) If ψ is true on π then return 1 else 0
APMC Implementation

- Compiler

 input: model description M, ψ

 output: an ad-hoc verifier for the set of properties over the given model. These are in fact a set of ANSI C functions.

- Deployer

 input: δ, ε and k

 output: A stand alone binary. It creates the main function as well as the engine which the compiler output lacks
Sketch of the MAC Protocol

- TDMA like framed approach. Frames dived into slots.
- Two modes - **LooseMAC** and **TightMAC** [2]
- **LooseMAC**
 - Same frame size at all nodes
 - Simple
 - Lower throughput (due to large frames)
- **TightMAC**
 - Nodes may have different frame sizes
 - More complex
 - Higher throughput
LooseMAC- Basic Idea

- Nodes repeatedly select a **random time slot** until it is collision-free in the 2-neighborhood.
TightMAC- Basic Idea

- Nodes may have different frame sizes.
- Runs on top of LooseMAC.
- Motivation: “tighten” the frames to increase throughput.
Modeling

- Each sensor modeled by an independent module.
- Each sensor can be in one of the three modes:
 - NEWSLOT
 - WATCH
 - READY
- When all nodes are in READY state, system is stable
- The three main subparts of LooseMAC are
 - Send() : broadcasts state of node i in current time slot.
 - Receive() : In every time slot, node checks for conflicts or fresh nodes.
 - UpdateMode() : updates mode of node i in its current time slot.
Modeling

- The behavior of the main function of this TDMA protocol is as follows:

 LooseMAC

 (i) Initialize some internal values

 (ii) (a) Call sequentially Send(), Receive() and UpdateMode(),
 (b) Increment a local time reference,
 (c) Loop to (a).

- The events are implemented using the idea of *states*. A state describes the current progress of each module.
Modeling

- The equivalence between the execution of LooseMAC and the internal state of a node i is as follows:

<table>
<thead>
<tr>
<th>Internal State</th>
<th>LooseMAC Main Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotIn</td>
<td>// Node is not in the network</td>
</tr>
<tr>
<td>Init</td>
<td>(\text{Mode} \leftarrow \text{NEW SLOT})</td>
</tr>
<tr>
<td>Sending</td>
<td>(\text{Send()} ())</td>
</tr>
<tr>
<td>Receiving</td>
<td>(\text{Receive()} ())</td>
</tr>
<tr>
<td>UpdateMode</td>
<td>(\text{UpdateMode()} ())</td>
</tr>
<tr>
<td>Ended</td>
<td>(\text{TimeReference} \leftarrow \text{TimeReference} + 1)</td>
</tr>
<tr>
<td></td>
<td>if (\text{TimeReference} = \text{FrameSize} + 1) then</td>
</tr>
<tr>
<td></td>
<td>(\text{TimeReference} \leftarrow 1)</td>
</tr>
<tr>
<td></td>
<td>end if</td>
</tr>
<tr>
<td></td>
<td>end while</td>
</tr>
</tbody>
</table>

- TightMAC is an addendum to LooseMAC code. It uses the slots found by LooseMAC to compute another conflict-free slot.
Experiments

- Parameters:
 - $\varepsilon = 10^{-2}$
 - $\delta = 10^{-5}$
 - $k = 32000$ (length of path)

- Topologies:
 - Peer-to-peer communication over dense graph
 - Peer-to-peer communication over sparse graph

- Experiments for LooseMAC
 - Contention free from initial state
 - A fresh node breaks the stability momentarily
 - Contention-freeness after a node joining the network

- Experiments for TightMAC
 - Stability of the network
Results: LooseMAC

(a) prob. vs Time Units - dense graph - frame size = 32

(b) prob. vs Time Units - sparse graph - frame size = 32
Results: LooseMAC

(a) prob. vs Time Units - dense graph - frame size = 64
(b) prob. vs Time Units - sparse graph - frame size = 64
Results: TightMAC

Fig. 5. Experimental results - TightMac
Conclusion

This paper presents an analysis, using approximate probabilistic model checking, of a TDMA based contention-free MAC protocol.

- This method allows to efficiently verify/analyze the correctness and performance of complex distributed algorithms over sensor networks.
- This method does not suffer from the state space explosion phenomenon arising with classical model checking methods.
- However the numerical results are accurate only with respect to an approximation parameter (ε here).
- The method saves a lot of computing power and memory.
References

Thank You.
Any Questions?