Spectral Sensitivity of the NbN Single-Photon Superconducting Detector

Roman SOBOLEWSKI†††, Ying XU†, Xuemei ZHENG†, Carlo WILLIAMS†, Jin ZHANG†, Aleksandr VEREVKIN†, Galina CHULKOVA††, Alexander KORNEEV†††, Andrey LIPATOV†††, Oleg OKUNEV†††, Konstantin SMIRNOV†††, and Gregory N. GOL'TSMAN†††, Nonmembers

SUMMARY We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to ~1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (< 100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm and 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices. Key words: single-photon optical detector, quantum efficiency, infrared radiation, NbN superconducting thin film, quantum communication, spectral sensitivity

1. Introduction

Single-photon detectors (SPD's) represent the ultimate sensitivity limit for any radiation-type detectors. At present the main problem is the development of SPD's for infrared (IR) wavelengths. The 1.55-µm wavelength is the most important because of fiber-optic telecommunications needs. Efficient detection of single IR photons remains the major technological challenge since these photons carry significantly less energy than those of visible light, making it difficult to engineer a substantial electron cascade. The existing commercial silicon avalanche photodiodes [1] have a spectral sensitivity limited to below ~1-µm wavelength, restricted by the Si bandgap, while photodiodes based on narrow-gap semiconductors exhibit unacceptably large dark counts [2].

Superconducting devices are the natural choice for fast and ultrasensitive radiation detection because of their quantum nature and low-noise cryogenic operation environment. The typical superconducting energy gap 2Δ (Cooper-pair pairing energy) is two to three orders of magnitude smaller than in a semiconductor; thus, the photon absorption in a superconducting detector creates a very large number of excited quasiparticles (broken Cooper pairs). We have recently demonstrated that a single 790-nm photon generates an avalanche of above 300 quasiparticles in an NbN film [3]. Superconducting detectors should be sensitive well into the IR range. In addition, energy relaxation time constants of quasiparticles in superconductors are in the picosecond time range for both the low-temperature [4] and high-temperature [5] superconductors, assuring gigahertz repetition rates for superconducting SPD's.

Recently, we proposed a superconducting SPD based on ultrathin, submicron-width NbN thin film [6]. This type of device can be qualified as a new type of superconducting hot-electron photodetector. The detection mechanism is based on supercurrent-assisted hotspot formation of a resistive barrier across a very narrow superconducting stripe, kept at a temperature well below the material's superconducting transition Tc. The physics of operation of an NbN SPD has been described in detail in Refs. [6] and [7]. Here, we concentrate on the spectral sensitivity measurements of the NbN SPD devices, manufactured as short, single stripes and long, meander-type structures. Special emphasis is placed on the detection of 1.55-µm photons because of the significance of this wavelength for communications.

2. Device Fabrication and Geometry

We use nominally 0.2-µm-wide strips, patterned by electron-beam lithography from 10-nm-thick NbN films, deposited on a sapphire substrate by reactive dc magnetron sputtering in an Ar + N2 gas mixture [8]. The studied devices were either 1-µm-long microbridges, or meander-type structures, covering 4-µm by 4-µm or 10-µm by 10-µm active areas. A scanning electron microscope (SEM) image of a 10 × 10-µm2 device is presented in Fig. 1.

3. Experimental Setup

Our experimental setup is very similar to one we used earlier [6]. The NbN SPD was mounted on a cold...
plate ($T = 4.2\, \text{K}$) inside an optical, liquid-helium cryostat. We used cold glass filters to block the room-temperature background radiation from falling onto the sample. The sample was dc biased in a constant voltage regime and mounted on a semirigid coplanar transmission line, connected to a cryogenic, low-noise amplifier coupled with a cryogenic isolator and characterized by 30-dB gain and 1- to 2-GHz bandwidth. Outside the cryostat, the signal passed through a second broadband power amplifier (9 GHz bandwidth; 20-dB gain) before going to a 12-GHz-bandwidth single-shot oscilloscope for display and/or to a 200-MHz, variable-voltage-level threshold counter for real-time event counting and statistical analysis.

Photon sources were either 100-fs-wide pulses with an 82-MHz repetition rate at 1.55-µm wavelength from a self-mode-locked titanium-sapphire laser, coupled with an optical parameter oscillator, or 40-ps-wide pulses with 1-MHz repetition rate from Hamamatsu pulse laser diodes, operating at 0.63-µm, 1.33-µm, and 1.55-µm wavelengths. The intensity of our optical pulses was attenuated using banks of neutral-density filters. In addition to pulsed-laser experiments, the wavelength dependency of SPD’s detection efficiency (DE) was measured using a grating spectrometer and a cw blackbody radiation source.

4. Experimental Results and Discussion

The current-voltage (I-V) characteristics of an NbN microbridge, operated at 4.2 K, is shown in Fig. 2. The I-V curve is slightly hysteretic and is typical for a long, superconducting constriction [9]. We see that the device critical current I_c is approximately 48 µA, while the normal-state resistance is equal to $\sim 1\, \text{k}\Omega$. The broken line is the 50-Ω load line that corresponds to the device switching process between the zero-voltage state (point A) and the metastable region (point B). We note that point B cannot be accessed under dc operating conditions when the device is biased below its I_c and no light is incident upon the microbridge. Photon absorption leads to a transition from A to B, and as a result, a voltage signal can be observed at the device terminals with the amplitude corresponding to the voltage level at point B. The signal duration depends on the dynamics of formation and subsequent healing of the resistive hotspot induced by the photon absorption [7]. A hysteretic feature in the I-V curve sets the highest possible bias current and, thus, the sensitivity limit of our device.

True single-photon counting requires that the photon detection probability is a linear function of the number of photons incident on the device area [6]. Figure 3 shows the probability of a 1-µm \times 0.2-µm detector producing output voltage transients as a function of the average number of 1.55-µm photons per pulse, incident on the device. The counting probability dependence is very similar to one presented in Ref. [6].
for 0.81-µm-wavelength radiation. The vertical axis in Fig. 3 corresponds to the number of detector counts per second (equivalently, per 82×10^6 laser pulses), based on the average number of counts detected by SPD over a 60-s counting period. At extremely low photon doses, our experimental data points leveled off at ~ 1 count/s, which can be interpreted as the laboratory photon background radiation level. The intrinsic dark count rate (when the optical input was completely blocked) of our SPD was below 0.001 count/s and was limited by the device thermal fluctuations at 4.2 K and the long-term stability of the bias source.

In Fig. 4, we present a counting rate versus the bias current dependence for three different photons energies, for the same device as in Fig. 2. We note that in each case the counting rate, when the device is biased very close to I_c (above 0.93 I_c at 0.63-µm wavelength and above 0.95 I_c at 1.33-µm and 1.55-µm wavelengths), follows the exponential law (dashed fitting lines in Fig. 4). In this region, the device is biased in the hysteretic I-V curve, between low and high critical currents (Fig. 2) and the counts are not due to photon absorption, but due to random switching between the zero-voltage and resistive parts of the I-V characteristics. Actually, the low value of the hysteretic I_c in Fig. 2 sets the highest stable bias current when our device operates as the photon counter. Unfortunately, hysteretic features vary from device to device, and highest possible bias has to be established for each device independently.

The counting rate versus bias current dependence for a meander-type device with 4×4-µm2 active area at different wavelengths is presented in Fig. 5. The meander-type devices have consistently less-pronounced I-V hysteretic features, and the maximal bias current is above 0.97 I_c independent of the photon wavelength. Just below 0.97 I_c bias, the counting exhibits saturation-like behavior, when DE is maximal and the device operation is stable. As can be seen in Fig. 5, the maximum counting rate at this optimal bias level depends on the radiation wavelength.

Spectral dependencies of DE for various meander-type devices are presented in Fig. 6. We stress that while the quantum efficiency (QE) of our SPD’s is defined with respect to the actual device active area, DE is a global parameter referring to the number of photons registered by the detector, normalized to the incident beam size. Figure 6(a) presents DE versus the radiation wavelength, while Fig. 6(b) shows the same experimental DE data, but plotted as a function of the photon energy $h\nu$. As can be seen, the DE dependencies have an activated-type character with $DE \sim \exp(-E_g/h\nu)$, where E_g is the activation energy. The physical origin of such behavior and actual values of activation energies [solid lines in Fig. 6(b)]: $E_g \sim 70$ meV at $h\nu < 0.65$ eV, and $E_g \sim 0.6$ eV at $h\nu > 0.65$ eV, need future clarification. The activation character of DE is clearly universal for all our tested devices. The exponential DE dependence on photon energy results in the DE of SPD at 1.55-µm being ~ 1.5 order of magnitude lower, as compared with the 0.81-µm-wavelength results. Nevertheless, the intrinsic QE of our NbN SPD at 1.55-µm wavelength can be estimated as $\sim 1\%$, which is favorably comparable with semiconductor single-photon detectors.

Finally, we want to mention that we performed extensive atomic force microscopy (AFM) image studies of our SPD structures and found that the absolute DE values were directly correlated with the uniformity level of the superconducting strip edges. The devices with higher uniformity demonstrated significantly higher DE, as shown in Fig. 7, where a “good” device (open circles) has DE almost an order of magnitude...
Fig. 6 Spectral dependence of detection efficiency of meander-type devices versus the photon wavelength (a) and energy (b). Closed circles—device 1 (10 × 10 μm², 0.2-μm width); gray triangles—device 2 (4 × 4 μm², 0.2-μm width), open squares—device 3 (4 × 4 μm², 0.1-μm width), T = 4.2 K. Closed triangles—device 1, T = 6.5 K.

Fig. 7 Detection efficiency versus wavelength dependencies for two 10 × 10-μm² devices (both with 0.2-μm width) with different edge uniformity levels (see the text).

larger than the “bad” one (closed circles). Improvements in electron-beam lithography should allow us to produce more uniform devices with maximal DE.

5. Conclusions

We have measured the response of superconducting NbN thin-film SPD’s to cw and pulsed laser radiation. Spectral sensitivity follows the exponential-type dependence, and decreases with the quantum energy decrease. The practical wavelength limit of our current devices is about 3-μm wavelength. At 1.55-μm radiation our detector exhibited a respected ∼1% QE.

Acknowledgment

This research was made possible in part by Award No. RE-2227 of the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union. Additional support was provided by Schlumberger TT and by the US AFOSR Grant F49620-01-1-0463.

References

Roman Sobolewski received the M.S. degree in Electrical Engineering from the Warsaw Technical University, Warsaw, Poland, in 1975, and the Ph.D. and Sc.D. degrees in Physics from Polish Academy of Sciences, Warsaw, Poland, in 1983 and 1992, respectively. Currently he is a Professor with the Department of Electrical and Computer Engineering at the University of Rochester, Rochester, NY, with a joint appointment of Senior Scientist at the Laboratory for Laser Energetics. His interests are concentrated on the physics of ultrafast phenomena in condensed matter, novel electronic and optoelectronic devices, and on quantum communication and computation.

Ying Xu received the B.S. degree in Electronics Engineering from Tsinghua University, Beijing, China, in 1999 and the M.S. degree in Electrical and Computer Engineering from the University of Rochester, Rochester, NY, in 2001. She is currently a Ph.D. student at the University of Rochester. Her research focuses on the physics of ultrafast photoresponse of high-temperature superconducting thin films and structures.

Xuemei Zheng received her B.E. degree in the Department of Precision Instrument Engineering from Tianjin University, P.R. China in 1994 and her M.A. degree in Physics from the City College of New York in 1999. Since 1999, she has been a Ph.D. student in the Department of Electrical and Computer Engineering of University of Rochester, NY. Her research interests include ultrafast optoelectronics, ultrafast measurement techniques, and electronic imaging.

Carlo Williams received the B.S. and M.S. and Ph.D. degrees in Electrical Engineering from the University of Rochester, Rochester, New York, in 1994, 1996 and 2001, respectively. His research interests include ultrafast measurement techniques and the implementation and characterization of superconducting photodetectors.

Jin Zhang received his B.E. degree from Xi’an Jiaotong University in 1997 and M.S. degree from Tsinghua University in 2000, both in Materials Science. In 2000, he joined the University of Rochester as a Ph.D. student in the Materials Science Program. His research interests are focused on studies of superconducting thin films and on superconducting ultrafast photon detectors.

Aleksandr Verevkin received M.S. degree in Physics from the Novosibirsk University, Russia, in 1980 and the Ph.D. in Physics from the Moscow State Pedagogical University, Russia, in 1991. Currently he is a Visiting Scientist with the Department of Electrical and Computer Engineering at the University of Rochester, Rochester, NY. His interests are concentrated on physics of low-dimensional structures, and novel superconducting thin-film devices.

Galina Chulkova received Ph.D. degree in Solid State Physics from the Moscow State Pedagogical University (MSPU) in 1997. She performed studies on electron-phonon interactions in metal films and 2-D heterostructures, and on hot electron bolometers in far infrared band based on superconducting films. Currently she is a Senior Research Scientist in MSPU and concentrates on studies of superconducting detectors.

Alexander Korneev graduated from the Moscow State Pedagogical University in 2000. Now he is a Ph.D. student there. His research interests are in studies of nonequilibrium processes in superconducting single-photon detectors.

Andrey Lipatov received his M.S. and Ph.D. degrees in Radio-Physics from the Moscow State Pedagogical University (MSPU) in 1996. Currently he is a Senior Research Scientist in MSPU. He performs studies on electron-phonon interactions in superconductors, antennae modeling, terahertz range and infrared detectors, and non-equilibrium phenomena in superconductors and Josephson junctions.
Oleg Okunev graduated from Moscow State Pedagogical University (MSPU) in 1980. Currently he is a Senior Research Scientist in MSPU. His scientific interests are in the areas of kinetic phenomena in superconducting films and millimeter-wave techniques.

Konstantin Smirnov received his M.S. and Ph.D. degrees in Radio-Physics from Moscow State Pedagogical University (MSPU). He is a Leading Research Scientist in Physics Department of MSPU. His research interests are in the fields of electron-phonon interactions in two-dimensional semiconductor structures, the quantum Hall effect, and design and fabrication of superconducting thin-film devices.

Gregory Gol’tsman received his Ph.D. degree in Radio-Physics and Doctor of Science (Sc.D.) degree in Semiconductor and Dielectric Physics from Moscow State Pedagogical University (MSPU), Moscow, Russia, in 1973 and 1985, respectively. Currently he is a Professor at the Physics Department of MSPU and a Leader of the Radio-Physics Laboratory of MSPU. His scientific interests are in the areas of superconductivity, nonequilibrium phenomena in superconductors, semiconductors, far-infrared spectroscopy, as well as terahertz and infrared detectors (including single-photon detectors) and terahertz mixers.