Unsupervised Learning Approach to Feature Analysis for Automatic Speech Emotion Recognition

Sefik Emre Eskimez, Zhiyao Duan, Wendi Heinzelman
eeskimez@ur.rochester.edu, {zhiyao.duan,wendi.heinzelman}@rochester.edu
Department of Electrical and Computer Engineering, University of Rochester

Motivation

- **Problem:** Lack of labeled training data
- Recording and annotating emotional speech is a time-consuming process
- **Solution:** Unsupervised feature learning

 - Learn features from widely available general speech
 - Use learned features for automatic speech emotion recognition (ASER)

Method

We follow these steps to build our system:

1. Train an autoencoder
2. Freeze the encoder parameters
3. Add fully connected (FC) layers on top of encoder for classification

Proposed System Overview

- **Figure 1:** Proposed ASER system overview. The dashed red windows represent the sliding window with 50% overlap. From each window, emotion class probabilities \(p_1, p_2, p_3, p_4 \) and \(p_5 \) are predicted and the average of these vectors is calculated over all windows is calculated for each utterance.

Denoising Autoencoder (DAE)

Adversarial Autoencoder (AAE)

Variational Autoencoder (VAE)

Adversarial Variational Bayes (AVB)

Results

Figure 2: DAE network architecture: reconstructing the clean spectrogram from noisy input

Figure 3: AAE network architecture: variational inference on auto-encoder by constraining the latent representation through adversarial training

Figure 4: VAE network architecture: variational inference on auto-encoder by constraining the latent representation to follow a normal distribution

Figure 5: AVB network architecture: unifying VAE and generative adversarial networks (GANs)

Figure 6: The unweighted accuracy rating (UAR) results for the baseline and proposed systems.

Figure 7: F1-score results for the baseline systems and the proposed systems. F1-score is calculated for each class, and their unweighted mean is presented.

Conclusions

- Proposed a CNN based ASER system
- Systematically explored the following unsupervised methods for ASER:
 - DAE, VAE, AAE, and AVB
- Showed that these methods performed better than the SVM and CNN baselines