Reading:

Wireless Sensor Networks (WSNs)

- Microsensors
 - Low power, cheap sensors
 - Sensor module (e.g., acoustic, seismic, image)
 - A digital processor for signal processing and network protocol functions
 - Radio for communication
 - Battery-operated

- Sensors monitor environment
 - Cameras, microphones, physiological sensors, etc.
 - Gather data for some purpose

- Hundreds or thousands of nodes scattered throughout an environment
- Each sensor can collect data
- Data routed via other sensors to a sink or base station node
WSNs (cont.)

- Sensor data limited in range and accuracy
 - Each node can only gather data from a limited physical area of the environment
 - Data may be noisy
 - Data aggregation enables higher quality (less noisy) data to be obtained that gives information about a larger physical area than any individual data signal

- Networking sensors enables
 - Extended range of sensing \rightarrow improved quality
 - Fault tolerance due to redundancy in data from different sensors
 - Distributed processing of large amounts of sensor data
 - Scalability: quality can be traded for system lifetime
 - “Team-work”: nodes can help each perform a larger sensing task
WSN Applications

- New wireless networking paradigm
 - Requires autonomous operation
 - Highly dynamic environments
 - Sensor nodes added/fail
 - Events in the environment
 - Distributed computation and communication protocols required

- Applications
 - Home security
 - Machine failure diagnosis
 - Chemical/biological detection
 - Medical monitoring
 - Surveillance and reconnaissance
 - Animal/plant monitoring (e.g., for research)
Example Application: Environmental Monitoring

- Traffic patterns many-to-one
- Raw sensor data or high level descriptions about environmental phenomena

Example projects
- ZebraNet
- Ecology of rare plants in Hawaii
Example Application: Health Monitoring

- Sensors monitoring vital signs
 - Blood pressure, heart rate, EKG, blood O2
- One or more sensors indicate abnormality
 - Inform person
 - Take corrective measures
 - Control pacemaker functions
 - Automatically dispense medication
 - Alert emergency team
- Sensing, processing, understanding, feedback/control
- Requires protocols that are
 - Reliable
 - Flexible
 - Scalable
 - Secure
Sensor Platforms

- Example platforms
 - Smart Dust (UC Berkeley)
 - Berkeley Motes
 - Telos Motes (MoteIV)
 - iBadge (UCLA)
 - WINS (UCLA)
Sensor Platforms
WSN Limitations

- Sensor energy
 - Each sensor node has limited energy supply
 - Nodes may not be rechargeable
 - Eventually nodes may be self-powered
 - Energy consumption in sensing, data processing, and communication
 - Communication the most energy-intensive
 - Must use energy-conserving communication

![Power consumption of node subsystems](image)
WSN Limitations (cont.)

- Communication
 - The bandwidth is limited and must be shared among all the nodes in the sensor network
 - Spatial reuse essential
 - Efficient local use of bandwidth needed
WSNs vs. MANETs

<table>
<thead>
<tr>
<th>General Ad Hoc Networks</th>
<th>Sensor Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreliable communication</td>
<td>Unreliable communication</td>
</tr>
<tr>
<td>Require self-configuration</td>
<td>Require self-configuration</td>
</tr>
<tr>
<td>Constrained energy and bandwidth</td>
<td>Very constrained energy and bandwidth</td>
</tr>
<tr>
<td>Small-scale</td>
<td>Large-scale</td>
</tr>
<tr>
<td>Typically mobile</td>
<td>Typically immobile</td>
</tr>
<tr>
<td>Competitive</td>
<td>Cooperative</td>
</tr>
<tr>
<td>One-to-one traffic pattern</td>
<td>Many-to-one traffic pattern</td>
</tr>
<tr>
<td>Address-centric</td>
<td>Data-centric</td>
</tr>
<tr>
<td>QoS: delay, etc</td>
<td>Application-specific QoS</td>
</tr>
</tbody>
</table>
Design Factors

- What are the important features of WSNs?
- Fault tolerance/reliability
 - Network should be robust to individual node failures
 - Failures due to running out of energy, hardware failures, malicious intercept of sensor, etc.
- Scalability
 - Protocols must scale to thousands or millions of sensor nodes
 - Requires intelligent management of high density nodes
- Cost
 - Must have cheap sensors
Design Factors (cont.)

- **Topology**
 - Deployment: random or deliberate placement of nodes
 - Changes in topology during network operation
 - New nodes added to the system
 - Nodes failing
 - Environmental changes

- **Energy consumption**
 - Sensor functions: sensing, communication, data processing
 - All require energy
Evaluating WSNs

- What are the performance metrics for WSNs?
 - System lifetime
 - E.g., time until network partition
 - E.g., time until probability of missed detection exceeds a threshold
 - Quality of result of sensor network
 - Application-specific measure
 - Latency of data transfer
 - SNR of aggregate data signal
 - Probability of missed detection or false alarm
 - Tradeoffs can be made among network parameters
 - E.g., can reduce quality of result of sensor network to increase system lifetime
Taxonomy of WSN Architectures

- In what ways do sensor networks for various applications differ?
- Data sink(s)
 - Embedded within network
 - Network edges
 - Mobile access point
 - One or several
- Sensor mobility
 - Typically stationary sensors
 - Some projects use mobile sensors
 - ZebraNet
 - Military operations
 - Self-propelled sensors
 - Robots
Taxonomy (cont.)

- Sensor resources
 - Memory
 - Processing
 - Transmit power (fixed vs. variable)
 - Locations/density

- Traffic patterns
 - Event-driven applications
 - Continuous data generation
 - Query-driven applications
Design Issues

- New protocols needed
- MAC
 - Cooperative nature of sensor networks (fairness not an issue)
 - Exploit traffic patterns
 - Energy efficiency extremely important
 - Reduce idle listening
 - Reduce unnecessary reception
- Routing
 - Different traffic models
 - Data dissemination rather than point-to-point routing
 - Data-centric rather than address-centric
 - Location-aware sensors
 - Resource-aware routing needed
 - Exploit local aggregation
Design Issues (cont.)

- Topology control
 - Reduce idle power consumption → nodes sleep
 - Create fully-connected dominating set from active routers

- Transmission power control
 - How to avoid “hot spot” problem?
 - Provide connected network

- QoS Management
 - QoS determined by content of data rather than amount
 - Transport layer
 - Intelligent congestion management
 - Throttle back irrelevant data rather than each node’s sending rate
 - Coverage
 - Ensure enough sensors provide data
 - K-coverage: each location monitored by at least K sensors
Design Issues (cont.)

- Time synchronization
 - Very important in sensor networks
 - Needed to determine if event sensed by two sensors is in fact the same event
 - Needed to determine object speed
- Approaches
 - GPS – expensive, not energy-efficient
 - NTP (used in computer networks) – not enough precision
 - Newer approaches being researched
 - Romer’s Algorithm
 - Reference-Broadcast Synchronization (RBS)
Design Issues (cont.)

- Localization
 - Important for same reasons as time synchronization
 - Often times, only relative position is necessary
 - GPS is overkill and unattractive for energy reasons
 - RSSI used to infer distances
 - Time of Arrival (ToA)
 - Time Difference of Arrival (TDoA)
 - Angle of Arrival (AoA)
 - Sensor can find its own location using received beacons
 - Sensor can have other nodes measure its location
 - Sensor sends beacon message and neighbors use trilateration based on signal strength measurements
 - Problem – small scale fading
Research Issues (1)

- Appropriate QoS model
 - Traditional networks: delay, packet delivery ratio, jitter
 - Sensor networks: probability of missed detection of an event, signal-to-noise ratio and network sensing coverage
 - Difficult to translate these data-specific QoS parameters into meaningful protocol parameters

- Cross-layer Architectures
 - Entire protocol stack tailored to specific needs of WSN application
 - Protocols should be integrated with hardware
 - Trade-off: generality and ease of network design to achieve lifetime increases
Research Issues (2)

- Reliability
 - Links and sensors may fail, temporarily or permanently
 - Must design protocols to provide reliable service with these failures
- Heterogeneous Applications
 - Sensor nodes may be shared by multiple applications with differing goals
 - Protocols must efficiently serve multiple applications simultaneously
- Heterogeneous Sensors
 - How to make best use of resources in heterogeneous sensor networks
Research Issues (3)

- **Security**
 - How much and what type of security is really needed?
 - How can data be authenticated?
 - How can misbehaving nodes be prevented from providing false data?
 - Can energy and security be traded-off such that the level of network security can be easily adapted?

- **Actuation**
 - Eventually sensor networks will “close the loop”
 - Data do not need to reach base station
 - Current models for sensor networks may not be valid
Research Issues (4)

- Distributed and Collaborative Data Processing
 - How to best process heterogeneous data?
 - How much data and what type of data should be processed to meet application QoS goals while minimizing energy drain?

- Integration with Other Networks
 - Sensor networks may interface with other networks, such as a WiFi network, a cellular network, or the Internet
 - What is the best way to interface these networks?
 - Should the sensor network protocols support (or at least not compete with) the protocols of the other networks?
 - Or should the sensors have dual network interface capabilities?
Discussion